Sustainable Use of Natural Capital

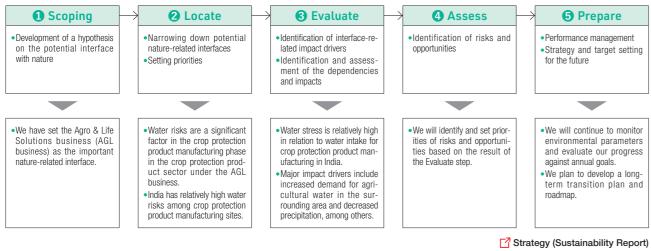
Sumitomo Chemical has set biodiversity conservation and sustainable use of natural capital as material issues in the Nature Positive area. We have formulated Sumitomo Chemical's Commitment to the Conservation of Biodiversity. To realize Nature Positive, we are promoting a variety of initiatives from the perspectives of both obligation and contribution, in an integrated manner with carbon neutrality and a circular economy.

The Sumitomo Chemical Group's Commitment to the Conservation of Biodiversity (Sustainability Report)

Disclosure in Line with TNFD Recommendations

We have registered as a TNFD Adopter and endorsed the TNFD Recommendations, which were published in September 2023 by the Taskforce on Nature-related Financial Disclosures (TNFD). Please see the Sustainability Report for details of our disclosures in the TNFD recommended disclosure areas: Governance, Risk Management, Strategy, and Metrics and Targets.

Sustainable Use of Natural Capital (Sustainability Report)


Governance

The Sumitomo Chemical Group has set conservation and regeneration of biodiversity and natural capital as one of the material issues to be addressed as management priorities. The Board of Directors supervises this matter by receiving reports on nature-related dependencies, impacts, risks, and opportunities, and by providing recommendations and instructions through management meetings, the Carbon Neutral Strategy Council, and the Internal Control Committee. Please see the Sustainability Report for details.

Strategy

The Sumitomo Chemical Group assesses nature-related dependencies and impacts, as well as risks and opportunities, based on the LEAP approach recommended by the TNFD, and incorporates the results into the formulation of the Group's strategy.

Summary of the LEAP approach

Risk & impact management

The Sumitomo Chemical Group has a system in place to manage risk assessment items evaluated in the abovementioned LEAP approach together with their impacts.

- Promotion of Group-wide Priority Risk Assessment and Countermeasures (Sustainability Report)
- Cross-organizational Risks and Crisis Response (Sustainability Report)

Metrics & targets

With respect to metrics for nature-related dependencies and impacts on a global scale, targets are set and managed both on a standalone basis for Sumitomo Chemical and on a consolidated basis including Group companies. With respect to metrics at the local level, targets are set and managed by each manufacturing site and Group company.

Environmental Activity Goals and Results (Sustainability Report)

Example of Initiatives

☑ Examples of Initiatives for "Obligation" and "Contribution" (Sustainability Report)

Obligation

We aim to continuously reduce the environmental impact of our business activities and endeavor to conserve and restore biodiversity and natural capital by taking characteristics of local communities into consideration and cooperating with stakeholders in our supply chains

- Reduction of greenhouse gas (GHG) emissions from energy and processes
- · Appropriate chemical substance management
- Reduction of waste emissions
- Effective use of water resources
- Promotion of sustainableprocurement initiatives

Specific initiatives for "Obligation"

Effective use of water resources: Initiative in Bhavnagar Plant of Sumitomo Chemical India Ltd.

Sumitomo Chemical India Ltd.'s Bhavnagar Plant serves as a crop protection product manufacturing site in India. The plant used to purchase river water from the local municipality to secure water for production. However, in recent years, securing the water required for production has become difficult due to population growth in the surrounding area, rising demand for agricultural water, and a decline in annual precipitation.

The plant then began purchasing a portion of household wastewater to be treated by surrounding municipalities, treating it in-house with earthworm farming technology, and using it in its production processes. By doing so, the plant resolved the long-standing challenge of securing a stable supply of water necessary for production. It also reduced the amount of river water traditionally purchased from the municipality by more than 70%, thereby cutting water purchase costs by nearly half.

Wastewater treatmen

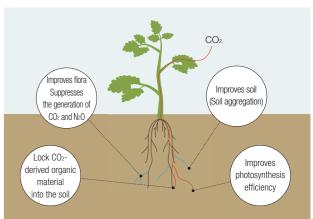
Treatment using earthworm farming technology instead of the common activated sludge method to suit the characteristics of household wastewater, which contains relatively high levels of nutrients

Contribution

We contribute to conserving and restoring biodiversity and natural capital across our value chain through development and provision of technologies, products, and services

- Provision of products and technologies that promote regenerative agriculture
- Development and implementation in society of technologies that contribute to recycling plastics and other resources
- Provision of products, technologies, and services that contribute to GHG emissions reduction

Specific initiatives for "Contribution"


Provision of products and technologies that promote regenerative agriculture: Spread of no-till farming

No-till farming is an agricultural method of growing crops without tilling, and is attracting attention from the perspective of reducing greenhouse gas (GHG) emissions by contributing to the reduction of CO_2 emissions from the ground, in addition to its significant environmental benefits such as soil protection and organic matter conservation. We have several herbicides suitable for use before sowing crops, and we will contribute to the spread of this farming method by ensuring the convenience of no-till cultivation through the promotion of these herbicides.

Provision of products, technologies, and services that contribute to GHG emissions reduction: Soil fertility by mycorrhizal fungi

Mycorrhizal fungi, a type of soil-dwelling microorganism that lives in symbiosis with plant roots, stimulates plant growth. These fungi receive carbon compounds produced by plants through photosynthesis, which increases the amount of carbon compounds in the soil and promotes carbon fixation, thereby reducing atmospheric CO₂ and contributing to soil fertility. We are working on the development of technology utilizing mycorrhizal fungi to achieve carbon neutrality and solve food problems.

Benefits of mycorrhizal fungi (including some hypotheses undergoing validation)

69 Integrated Report 2025