03 / エネルギー・機能材料部門 Energy & Functional Materials

最近のトピックス // Topics

2010	■大分工場にレゾルシン製造設備を新設。	■Completed a new plant to produce Resorcinol in the Oita Works.
2012	■愛媛工場の高純度アルミナ製造設備が完成。	■ Expanded production capacity for high-purity alumina in the Ehime Works.
2013	■韓国におけるリチウムイオン二次電池材料用高純度 アルミナ製造設備の新設。	Completed production facilities for high-purity alumina used for lithium-ion secondary batteries in South Korea.
2015	■エネルギー・機能材料部門を新設。	■ Established the Energy & Functional Materials sector.
2016	■リチウムイオン二次電池用正極材を展開する田中化学 研究所を第三者割当増資引き受けで子会社化。	Acquired Tanaka Chemical Corporation, a Japanese manufacturer of cathode materials for lithium-ion secondary batteries, via third-party allotment.
	■韓国でリチウムイオン二次電池用セパレータ製造設備の稼働開始。同設備の生産能力増強を決定。	■Began production of separators for lithium-ion secondary batteries at a plant in South Korea. Decided to increase the plant's production capacity.
2017	■ DPF (ディーゼル・パティキュレート・フィルター) 事業 からの撤退を決定。	■ Decided to exit the diesel particulate filter (DPF) business.
2018	■千葉工場にPES製造プラントが完成。	■ Constructed a new plant in the Chiba Works for the manufacture of polyethersulfone (PES).
2019	■田中化学研究所がリチウムイオン二次電池メーカー (ノースボルト社/スウェーデン)と正極材前駆体の 製造技術支援および販売契約を締結。	■ Tanaka Chemical Corporation concluded a distribution agreement with Northvolt Ett AB (Sweden), a cell manufacturer, and agreed to provide technical support for precursors for cathode material.
2020	■次世代電池の1つである固体型電池の実用化に向け、 京都大学と材料および要素技術の共同開発を開始。	■ Started to jointly develop materials and component technologies with Kyoto University that can lead to the practical implementation of solid-type batteries, which have drawn attention as a next-generation rechargeable battery technology.
	■田中化学研究所がリチウムイオン二次電池用正極材の 製造設備を増強。	■Tanaka Chemical Corporation expanded production facilities for lithium-ion secondary battery cathode materials.
2023	■染料事業から撤退。	■ Exited the dyestuff business.
	■ EPDM (エチレン・プロピレンゴム) 事業から撤退。	■ Exited the ethylene-propylene-non-conjugated diene rubber (EPDM) business.
	■愛媛工場でLCP(液晶ポリマー)の生産能力を増強。	■ Expanded production capacity for liquid crystalline polymer at the Ehime Works.

グローバル展開 // Globalization

主要な製品・事業 // Major Products and Businesses

アルミナ製品、アルミニウム、化成品、添加剤、合成ゴム、エンジニアリングプラスチックス、電池部材等

Alumina products, aluminum, specialty chemicals, additives, synthetic rubber, engineering plastics, battery materials, etc.

□ 住友化学レポート 2024 エネルギー・機能材料

Annual Report 2024* Energy & Functional Materials

財務ハイライト // Financial Highlights

売上収益とコア営業利益 Sales Revenue & Core Operating Income

■■ 売上収益(左軸) Sales revenue (left axis) コア営業利益(右軸) Core operating income (right axis)

償却前コア営業利益と資本的支出 Core Operating Income before Depreciation & Capital Expenditure

■■ 償却前コア営業利益 Core operating income before depreciation 資本的支出 Capital expenditure

資産合計と資産収益率 **Total Assets & ROA**

■■ 資産合計(左軸) Total assets (left axis) ◆ 資産収益率(右軸) ROA (right axis)

資産回転率 **Asset Turnover**

売上収益研究開発費比率 Ratio of R&D Expenses to Sales Revenue

投下資本とROI **Invested Capital & ROI**

■■ 投下資本(左軸) Invested capital (left axis) ◆ ROI(右軸) ROI (right axis)

^{*} Scheduled to be published at the end of October 2024

各事業の詳細情報 // Detailed Information on Each Business

スーパーエンジニアリングプラスチックス(SEP) Super Engineering Plastics (SEP)

SEPの概要

Overview of SEP

	特長 Advantages	主用途 Main applications	アクションプラン Action plan
液晶ポリマー Liquid crystalline polymer (LCP)	高耐熱性、高流動性、寸法安定性 High heat resistance, High fluidity, Dimensional stability	Electronic components	 高周波対応部材 (5G通信用含む)の開発、拡販 車載コネクタ用途の拡販 モビリティ部品用途の新規開発、拡販 Development and sales for high frequency-capable materials (including 5G applications) Expand sales for vehicle connector applications Development and expansion of sales for mobility product applications
ポリエーテルサルホン Polyethersulfone (PES)	高耐熱性、高耐クリーブ性*、 寸法安定性、難燃性、高耐水性 High heat resistance, High creep resistance*, Dimensional stability, Flame retardance, High resistance to water	細胞医薬・再生医療プロセス膜用途)	 ライフ&ヘルスケア (高機能膜、医療機器、テーブルウェア等)、航空機での開発、拡販 Development and sales for Life and Healthcare (high-performance membranes, medical instruments, tableware) and aircraft product applications

^{*} 高温環境での荷重下においても材料の変形が起こりにくい性質 A property that makes the material resist deformation even when under a heavy load in a high-temperature environment

LCPの生産体制整備

Prepare Production Regime of LCP

■生産能力の増強完了 (2023年6月完成) Production Capacity Expansion Completed (Finished in June 2023)

顧客需要に応じた生産能力の増強を検討 Considering expansion of production capacity in line with customer demands

- (注) 樹脂ベース。グレード構成により増減 (Note) Based on resin. Varies depending on grade mix.
- 車載、5G高速通信コネクタ用途への拡販 Expand sales of connectors for applications in automotive and high-speed 5G telecommunications
- 自社コンパウンド機能拡充 Expand functionality of in-house compounds

LCPの5G対応 Make LCP Compatible with 5G

■高速通信分野 樹脂材料の市場推移 Changes in the Resin Materials Market in the High-speed Communication Sector

- 成形品(コネクタ等) Shaped products (Connectors, etc.)
- フィルム(回路基板等) Film (Circuit boards, etc.)

(出所) 住友化学推定 (Source) Sumitomo Chemical estimates

■5Gで求められる高周波材料の特性 Characteristics of High-frequency Materials Required by 5G

- ■当社保有技術 Our Proprietary Technology
- 分子構造設計、合成技術 Molecular structure design, synthesis technology
- 可溶性LCPの量産技術 Mass production technology for soluble LCP
- コンパウンド設計、量産技術 Compound design, mass production technology
- 材料特性を活かした加工支援技術 Machining support technology utilizing material properties
- ■高速通信関連の主な用途 Major Applications in High-speed Communications
- サーバー用高速通信コネクタ High-speed telecommunication connectors for servers
- 基地局アンテナ用回路基板 Circuit boards for base station antennas
- スマートフォン用回路基板 Circuit boards for smartphones

基地局アンテナ用回路基板 Circuit boards for base station antennas

基地局アンテナ(イメージ) Antennas for base stations (concept)

車載用コネクタの需要拡大に伴うLCPの対応 LCP Response to Growing Demand for Vehicle Connectors

■車載用コネクタの市場推移 Trends in the Vehicle Connector Market

(出所) 住友化学推定 (Source) Sumitomo Chemical estimates

EV需要の拡大や電子制御化の進展により、 車載用コネクタの需要が拡大し、LCP化ニーズが増大

As vehicle connector demand expands due to growing demand for electric vehicles and the ongoing shift toward electronic controls, there will be a growing need to shift to LCP

耐熱性や寸法安定性、精密成形性などの 当社の強みを活かして拡販を目指す

Sumitomo Chemical aims to expand sales using our strengths, including heat resistance, dimensional stability, and precise shaping

軽量化に加えて、モビリティ部材に要求される機能

Functionality Required of Mobility Components, in Addition to Reducing Weight

モビリティ部材 Mobility components		以下の機能はSEPへ代替することにより向上 The following functions are enhanced by switching to SEP	従来材 Conventional materials	対応部材 Compatible components
パワートレイン*1 Powertrain*1	バッテリー部材 Battery components	生産性 (射出成形・部品一体化・形状自由度) Productivity (injection molding, component integration, shape flexibility)	鋼、アルミ Steel, aluminum	LCP/PES
	PCU部材 (パワーモジュール部材) PCU components (power module components)	放熱性、制振性 Heat dissipation, vibration damping	セラミックス、金属 Ceramics, metal	LCP
	モーター部材 Motor components	生産性 (射出成形・部品一体化) Productivity (injection molding, component integration)	アラミド紙 Aramid paper	LCP
	ギア Gears	静音性、システムサイズダウン Quietness, system downsizing	鋼、特殊鋼 Steel, special steel	PEEK/PES
	シールリング* ² Seal rings* ²	生産性 (射出成形) Productivity (injection molding)	鋼、特殊鋼 Steel, special steel	PEEK
	オイル循環パイプ Oil circulation pipes	エネルギー効率 (掻き上げ抵抗ロス低減) Energy efficiency (reduced loss of energy from pumping resistance)	_	LCP
シャーシー Chassis	パネル Panels	薄肉化、静音性 Thinness, quietness	鋼、アルミ Steel, aluminum	LCP
	構造部材 Structural members	比強度 Relative strength	鋼、特殊鋼 Steel, special steel	LCP
	クラッシュボックス Crash box	生産性 (射出成形・部品一体化・形状自由度) Productivity (injection molding, component integration, shape flexibility)	鋼、アルミ、PA Steel, aluminum, polyamide	LCP
電装 Electrical components	基板コネクタ Board connector	生産性 (実装プロセス) Productivity (assembly process)	汎用エンプラ General-purpose engineering plastic	LCP

^{*1} エンジンで作られた回転力を駆動輪へ伝える役割を担う装置 (A device that is responsible for transmitting the rotational power produced by the engine to the drive wheels

^{*2} 変速機などの油圧回路内に組付けられたオイル密封部品 An oil seal assembly within a hydraulic circuit such as a transmission

正極材 Cathode Materials

リチウムイオン二次電池の構造

Structure of a Lithium-ion Secondary Battery

住友化学グループの正極材事業

Sumitomo Chemical Group's Cathode Materials Business

■事業拡大への取り組み

Initiatives for Business Expansion

2016年10月	田中化学研究所 子会社化		
October 2016	Acquired Tanaka Chemical Corporation		
2018年10月 October 2018	增強 (第一期) Expansion (I)	主原料溶解設備增強 Expanded main raw material melting facilities	
2019年7月 July 2019	増強 (第二期) Expansion (Ⅱ)	製品生産・インフラ設備増強 +約1,200トン/月 Expanded production and infrastructure facilities added approx. 1,200 t/month	
2019年10月			
October 2019	Tanaka Chemical Corporation concluded a distribution agreement with Northvolt Ett AB, a cell manufacturer, and agreed to provide technical support for precursors for cathode materials.		
2020年10月 October 2020	増強 (第三期) Expansion (Ⅲ)	工場建屋・製品生産設備増強 +約1,200トン/月 Expanded plant buildings and production facilities added approx. 1,200 t/month	

■JERAとの共同開発

Joint Development with JERA

- 低環境負荷型リサイクル技術 (グリーンイノベーション基金事業) Low environmental impact recycling technology (Green Innovation Fund Project)
 - ▶正極材の効率的な回収・再利用、CO₂排出量の低減、およびコスト削減に貢献 Contributing to efficient collection and reuse of cathode materials and reduction of CO₂ emissions and costs
- ・愛媛工場にてベンチ設備の建設が完了
- •スケールアップ検討を推進
- Completed construction of bench facilities at the Ehime Works
- Promote scale-up study

セパレータ Battery Separators

LiB用セパレータの車種別数量市場規模推移・予測 LiB Separator Market Volume Trend and Forecast by Vehicle Type

- HEV(ハイブリッド車 Hybrid electric vehicles)
- PHEV(プラグインハイブリッド車 Plug-in hybrid electric vehicles)
- EV(電気自動車 Electric vehicles) ■ その他 Others

(出所)富士経済「エネルギー・大型二次電池・材料の将来展望 2023 - 電動自動車・車載 電池分野編-」

(Source) Fuji Keizai Co., "Global secondary battery market report: major applications, market size, share, trends 2023"

セパレータの種類 Separator Types

■当社事業 Our Business

アラミドコーティングセパレータの生産 Production of aramid-coated separators

セラミックコーティングセパレータに使用されるアルミナの他社への提供 Supplying alumina used in ceramic-coated separators to other companies

住友化学のセパレータ事業 Sumitomo Chemical's Separator Business

■ 市場ニーズと当社セパレータの特性 Market Needs and Characteristics of Our Separators

市場の電池ニーズ Market battery needs

- 高容量 High capacity
- 急速充放電 Rapid recharge

アラミドコーティングセパレータの特性 (セラミックコーティングセパレータとの比較) Characteristics of our aramid-coated separators (Comparison with ceramic-coated separators)	電池への寄与 Contributions to batteries
高耐熱·薄膜塗工	LiB高容量化
Have a high heat-resistant & thin film coating	Higher-capacity lithium-ion secondary batteries
緻密空隙構造	LiB長寿命化
Have a dense porous design	Improving the lifespan of lithium-ion secondary batteries
軽量	EV軽量化 (電費向上)
Lightweight	Reducing the weight of EVs (improving electrical consumption)

自動車用等の高容量電池に最適

Best suited for high-capacity batteries for automotive and other applications

xEV向けに需要拡大中 Increasing demand for use in xEV

■ セパレータの生産能力 Separator Production Capacity

	2023年度 FY2023	
日本 Japan	約1億m² Approx. 100 million m²	
韓国 South Korea	約4億m² Approx. 400 million m²	
計 Total	約5億m² Approx. 500 million m²	

顧客需要に応じた生産能力の増強を検討 Considering expansion of production capacity in line with customer demands

高純度アルミナ High-purity Alumina

住友化学の高純度アルミナ事業

Sumitomo Chemical's High-purity Alumina Business

■住友化学の高純度アルミナの製造法 (アルコキシド法:アルコールとアルミニウムを原料とする量産に適した製造法) Sumitomo Chemical's production process for high-purity alumina (Alkoxide Method: Production method suitable for mass production using alcohol and aluminum as raw materials)

■用途 Applications

分野 Field	用途 Applications
エネルギー、自動車 Energy, automotive	リチウムイオン二次電池用部材 Lithium-ion secondary battery materials 酸素センサー Oxygen sensors
情報通信 IT	半導体製造装置用セラミックス Ceramics for semiconductor manufacturing equipment 精密研磨剤、フィラー、基板、溶射材 Precision polishing, fillers, substrates, thermal spray materials
表示材、照明 Display materials, illumination	単結晶用原料、蛍光体用原料、HIDランプ Single-crystal applications, phosphor applications, high-intensity discharge lamp applications
ライフサイエンス Life sciences	人工関節、歯科材料 Artificial joint, dental materials
主な用途での優位性 Advantages in main a	● 高純度 ● シャープな粒度分布 ● 均一な粒子形状 pplications High purity Narrow particle size distribution Uniform particle size

スペシャリティケミカルズ Specialty Chemicals

	特長 Advantages	主用途 Main applications
レゾルシン Resorcinol	 ・当社独自製法を用い世界有数の規模で事業展開 ・各種ファインケミカル原料として幅広く使用 ・Strong global business presence with Sumitomo Chemical's proprietary manufacturing process ・Widely used as a key raw material for various fine chemicals in a broad range of applications 	 タイヤ用接着剤、 紫外線吸収剤、難燃剤 Adhesives for tires, ultraviolet absorbers, flame-retardants
レゾルシン樹脂 Resorcinol resin	適切な粘度を有し取り扱いが容易Proper viscosity makes it easy to handle	・タイヤコード用接着剤・Adhesives for tire cords
高分子用安定剤 Polymer stabilizers	 ・当社独自開発の加工安定剤、酸化防止剤 ・各種プラスチックおよびゴムの耐久性等の品質向上 ・少量添加で効果発現、食品包装用途に強みがあり、リサイクルに好適 ・Proprietary additive stabilizers and oxidation prevention additives developed by Sumitomo Chemical ・Improves qualities such as durability for a variety of plastics and elastics ・Shows effects in small amounts, suitable for food packaging applications and excellent for recycling 	 食品包装、自動車部材、 衛生材料 Food packaging, automobile components, sanitation materials
ポリオレフィン系 水性エマルション Water-based polyolefin emulsion	 接着困難な基材であるポリプロピレン (PP) に対して強力に接着 極性樹脂や金属にも接着するため、異種材料の接着が可能 溶剤や塩素を含まない環境配慮型の水性エマルション Excellent adhesion to polypropylene (PP) Enabling multi dissimilar material bonding through excellent adhesive performance for polar resins and metals, etc. Eco-friendly water-based emulsion without solvent and chlorine 	 ・塗装ブライマー ・自動車部材用接着剤 ・インクバインダー ・Paint primer ・Adhesive for automotive parts ・Ink binders

CO2分離膜 CO2 Separation Membranes

溶解度および拡散速度の差を利用してCO2を分離する膜(グリーンイノベーション基金事業)

CO₂ separation membranes that utilize the difference between its solubility and its diffusion speed (Green Innovation Fund Project)

■膜によるCO₂分離のイメージ Diagram of CO₂ Separation with Membrane

● CO2(二酸化炭素) ● N2(窒素)

- ■当社CO2分離膜の特長 Features of Our CO₂ Separation Membranes
- CO₂透過性能が極めて高い Extremely high CO₂ transmission performance
- CO₂/N₂分離に好適 Well suited for CO₂/N₂ separation
- ■想定している主な用途 Vision for Major Applications
- 火力発電所や各種工場、廃棄物焼却設備などで発生する 燃焼排ガスからのCO2分離

CO₂ separation from combustion exhaust gases generated by thermal power stations, various types of plants and factories, waste incinerators, etc.

カーボンニュートラル社会実現への貢献 Contributing to the creation of a carbon neutral society