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Introduction

There are many controllers working in plants, and

they are supporting the safety and stable operation of

the plants. PID controllers make up approximately 90%

of these controllers, and they play an important role as

the basic control part. On the other hand, tuning prob-

lems with PID controllers have been pointed out. It has

been reported that the loops having acceptable perform-

ance are only 32%, and 36% are in manual mode.1) In this

situation, control improvement activities based on total

productive maintenance (TPM) concepts became popu-

lar from the latter half of the 1990s to the first half of the

2000s for improving plant productivity, and attractive

work was done by domestic Japanese firms. For exam-

ple, there have been reports on cases where hands-off

operation was achieved by systemizing control improve-

ment techniques,2), 3) cases of expanding to all factories

the developed control improvement tools to support

PID controller tuning,4) and cases of developing novel

control algorithms and PID tuning methods.4) At Sum-

itomo Chemical, efforts to reduce the DCS alarms and

operations have been executed by applying advanced

control and operator support systems, and we have

moved ahead with activities focusing on automation. As

TPM activities moved forward, some measures for mak-

ing control improvements more efficient and maintain-

ing the activities up to now were required, and the need

for control performance diagnostic systems increased.5)

As a technique for evaluating controller performance

from plant operation data, there is a control perform-

ance evaluation method based on minimum variance

control theory.6) It is available as a benchmark for con-

trollers. The loops with lower performance existing in

the plant can be extracted efficiently by combining this

control performance evaluation method and various di-

agnostic techniques. A control performance diagnosis

system (PID Monitor) with this technology integrated

into it can perform controller diagnosis in an entire

plant, and with improvements by running a plan-do-

check-action (PDCA) cycle, it can play a role in improv-

ing and maintaining plant productivity.

On the other hand, the tuning work for PID con-

trollers required a great deal of time and effort, as well

as the other  companies enforcing TPM activities.

Therefore, a PID tuning tool (PID Tune) was developed

to make tuning more efficient. In recent years, data-dri-

ven PID controllers,7) VRFT, FRIT,8) tuning methods

based on oscillation data,9), 10) and other PID tuning

methods that use plant operation data have attracted at-

tention. The methods based on oscillation data uses the

closed loop data oscillating because of tuning problems,

and their salient feature is being able to carry out tuning

safely without process changes. PID Tune makes use of

this method.

In this article, we will introduce our construction of

the control performance diagnosis system and the PID

tuning tool as well as some applications in a real plant.
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Control Performance Diagnosis System (PID

Monitor )11)

There has been progress in increasing the use of in-

formation technology in plants, and plant information

management systems (PIMS) are collecting a large

amount of plant operation data. It has become possible

to construct online control performance diagnosis sys-

tems like the one in Fig. 1. PID Monitor runs on a web

server. It analyzes plant operation data according to a

tag list that has been registered in advance, and the re-

sults of diagnosis are output to a web file. The diagnos-

tic results can be referred to from a PC existing at the

site, and control performance in the entire plant can be

improved by moving forward with improvements based

on the diagnostic results. Since control problems are

eliminated one by one by running a PDCA cycle of con-

trol improvements in this manner, it is easy to gain the

understanding of operators. In addition, it is effective for

work on maintaining improved controllability.

1. Indices for control performance

First of all, a method for evaluating controller perform-

ance from plant operation data is discussed. Letting the

controller be C, the process be P and the transfer function

for disturbance be D as is shown in Fig. 2, the relation-

ship between the controlled variable y and the manipu-

lated variable u is given by the following equations.

where w is white noise and r is the set-point. Letting

there be d−1 steps of dead time in the process, the dis-

(1)

(2)

y(t) = P(z –1)u(t) + D(z –1)w(t)

u(t) = C(z –1)(r(t) – y(t))

turbance transfer function is divided into effect F during

the dead time and effect G that follows the dead time,

yielding the following equation.

z−d is the delay operator, and it gives the delay for d

steps.

The set-point for controlled variable y is defined as

r(t) = 0 unless the setting is changed, and it is expressed

by the following equation.

P̃ is the transfer function for processes with no dead

time. Equation (4) means the entire process including

the controller as a black box and is divided into the first

term that gives the direct effects of white noise within

the dead time on the process through the disturbance

transfer function and the second term that gives the ef-

fects after the dead time through a feedback loop. Here,

Fw(t) and Hw(t−d) are independent of each other, and

the variance between these gives rise to the following

relationship.

Var and σ2 show the variance, and σ2
MV is called the

minimum variance. From Equation (5), the controller

(4)

y(t) =  w(t)

=  w(t)

=     F + z –d  

= Fw(t) + Hw(t – d)

w(t)

1 + CP
D

1 + z –dCP̃
F + z –dG

1 + z –dCP̃
G – FCP̃

(5)

Var {y(t)} = Var {Fw(t) + Hw(t – d)}

 = Var {Fw(t)} + Var {Hw(t – d)}

 ≥ Var {Fw(t)} = σ 2MV

(3)D(z –1) = F(z –1) + z –dG(z –1)

Fig. 1 Control performance diagnosis system11) 
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examples of evaluation with the standard deviation σ y for

controlled variable y and with control performance

index η based on minimum variance control. The graph

at the top is white noise data simulating measurement

noise, and the graph at the bottom is a sine wave with

white noise added simulating bad tuning. In the stan-

dard deviation case, the value of Data 1 is larger than

Data 2, and it is assessed as poor performance, which is

wrong. Meanwhile, in  the control performance evalua-

tion case, the assessments are correct with the perform-

ance of Data 1 being good, and the performance of

Data 2 being poor.

Besides control loops that run in automatic mode, it

is desirable to detect the loops that have a large number

of manual operations within controllers which are nor-

mally in manual mode as control problems. Therefore,

manual operations obtained from DCS event data are

coupled with this, and it is reflected in comprehensive

index γ.

N is the number of manual operations per day, and

the comprehensive index γ is expressed as the product

with the control performance index η.

Since the control performance evaluation method de-

pends on the ideal minimum variance control, the con-

trol performance index η for PID controllers generally

tends to be low. Therefore, it is considered to be suffi-

cient performance even if η is around 0.7, and the con-

trol performance diagnosis system extracts loops which

are the comprehensive index γ of less than 0.3 or have

oscillation as control problems.

2. Various diagnostic methods

Next,  various diagnostic methods for identifying the

causes of controllers extracted as having control prob-

lems are discussed. We evaluated the control perform-

ance of 60 loops for controllers in a real plant, and

investigated the causes of poor control performance.

With this, the following classifications were obtained.

1) Erroneous detection caused by data acquisition

precision

2) Manual mode loops

3) Poor controller tuning

4) Valve failures

5) Interaction with other loops

6) External disturbance due to batch use, cleaning op-

erations, etc.

(7)γ = η × exp(–N · 24/100)

cannot be affected in any way during the dead time, so

the variance σ2
y of controlled variable y is either equal to

or greater than the minimum variance σ2
MV . The second

term Hw(t−d) in Equation (4) shows the effects after the

dead time, and this can be made small by control. Ideal

control where this variance become to zero, that is, the

second term in Equation (5), Var {Hw(t−d)} = 0, is  min-

imum variance control.

The variance when control is carried out by minimum

variance control is σ2
MV , and control performance can

be evaluated though the ratio with the variance σ2
y for

the current controlled variable y.

The control performance index η is a value in the

range of 0 to 1, and as η approaches 1, control perform-

ance can be judged to be better. As it approaches 0 con-

trol performance can be judged to be poorer. Since the

white noise w affecting the process is not measured, it

and the process model are estimated from controlled

variable y using an auto-regressive moving average

(ARMA) model, which is a kind of time series model, in

a calculating process for the control performance index.

Modeling is carried out under the assumption that the

process is driven by the white noise, and the control

performance index based on minimum variance control

does not depend on the form of the controller. It is cal-

culated from controlled variable y alone.

A variety of other control performance evaluation

methods have been proposed, and the simplest tech-

niques would be methods that use the variance in the

controlled variable y or the variance in the controlled

variable y and the manipulated variable u. Fig. 3 shows

(6)η(d –1) =  
 σ 2y

 σ 2MV (d –1)

Fig. 3 Comparison between standard deviation 
and control performance index 
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the latter, and it should be used if the flow rate data is

obtained.

1) Frequency analysis

If there is a failure in a valve, there is a characteristic

where waves similar to rectangles are displayed in the

case of flow rate control, and where waves similar to tri-

angles are displayed in the case of liquid level control.

In this method, the characteristics of the waveform are

detected using frequency analysis. It is used in casees

where flow rate data is not obtained. The Fourier series

expansion of rectangular waves and the power spectrum

give

and X is the Fourier transform, X* the complex conju-

gate root and Px the power spectrum. It is clear from

equation (9) that the harmonics appear in the power

spectrum of the rectangular wave for each odd number

period multiple in addition to the fundamental fre-

quency, and the power is attenuated 1/(2n + 1)2 for each.

Triangular waves also exhibit a similar tendency, and

harmonics are observed in the power spectrum. Thus it

is possible to use the peaks of the harmonics appearing

in the power spectrum to identify the differences be-

tween these waves and the sine waves which occur due

to bad tuning.

2) Method of identification using backlash inverse func-

tion

If there is a problem with a valve, the relationship be-

tween manipulated variable u and the flow rate is close

to the parallelogram in Fig. 4. This method makes use

of this characteristic, and it uses the backlash inverse

function F given by the following equation to detect the

shape of this parallelogram.

Backlash inverse function F is a function that makes

shifts in the amount of the sticking width (Fmax ) so that

the right side of the parallelogram is superimposed on

the left side, and Fmax is found such that the relationship

between manipulated variable u and the flow rate is lin-

ear after conversion. Fmax , which is the sticking width,

is found such that the absolute value for the correlation

(9)

x(t) = 

Px = X · X *

sin wt + sin 3wt + sin 5wt + …
π
4

3
1

5
1

(10)F(t) = max [min {F(t – 1) + Δu(t), Fmax}, 0]

Of these, 1) and 2) have nothing to do with controller

performance, and they must be eliminated as targets of

evaluation in pre-processing. There is not still effective

detection means for 6), and detection methods for plants

including many batch operations are being developed.

(1) Manual mode determination

The control mode data is generally not collected from

the relationship with PIMS volume, and it is conjectured

from the relationship between controlled variable y, set-

point r and manipulated variable u,  based on the follow-

ing equation.

Manual mode

or

when u = constant,

Loops corresponding to 2) that are determined to be

in the manual mode set control performance index η = 1

are removed from analysis.

(2) Determination of valve failure 5), 12), 13)

Besides bad tuning, there are also control problems

that are valve failures due to valve sticking. Causes of

valve failures include over-tightening of the gland pack-

ing parts, running out of grease from the valve body,

sticking because of fluid leakage, valve positioner failure

and mechanical hysteresis. To detect these valve fail-

ures using the control performance diagnosis system,

an identification method that makes use of the fre-

quency analysis and backlash inverse function shown in

Fig. 4 is utilized. The detection precision is greater with

(8)r > ȳ + 3σ y or  r <  ȳ – 3σ y

Fig. 4 Methods for detecting valve failure
(example of liquid level control)14)
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Cxx is the auto-correlation function and Rxx is the auto-

correlation coefficient. Identification for loop cause is

done by first extracting data oscillating in the same pe-

riod from the plant operation data and then analyzing

the relativity using the cross-correlation coefficient. If,

at this time, the maximum value of the absolute value

for cross-correlation coefficient is 0.5 or greater, it is de-

termined to have relativity. Next, the loop with the great-

est auto-correlation coefficient from related loops is

identified as the root cause loop.

(4) Determination of PID tuning failures

From among the data causing oscillation, loops that

oscillate alone other than (2) and loops identified as

root causes are assessed as PID tuning problems. In

addition, loops with lower performance are detected as

the tuning targets even if they are not causing oscilla-

tion.

PID Tuning Tool (PID Tune)10), 15)

The insufficient tuning loops diagnosed by the con-

trol performance diagnosis system can be tuned effi-

ciently by using the PID tuning tool shown in Fig. 6.

PID Tune identifies a process model from closed loop

plant operation data using a genetic algorithm (GA), and

the optimal parameters are calculated by a PID tuning

method based on generalized minimum variance con-

trol. This method does not require step tests, and it has

an industrial advantage that enables short-time tuning

without process changes.

1. Identification using genetic algorithm (GA)

Genetic algorithms (GA) simulating the process of bi-

ological evolution are one optimization method, and be-

coefficient for the value of the backlash inverse function

and the flow rate is maximized using an optimizing cal-

culation, and it is detected as valve failure if at a corre-

lation coefficient of 0.7 or higher and Fmax is 0.5 or

greater.

(3) Method for detecting root cause loop

Fig. 5 shows an example where insufficient tuning

propagates to the other loops and makes the control

performance deteriorate. The graphs on the left show

the trends and those on the right show the cross-cor-

relation coefficients and the auto-correlation coeffi-

cients.

Since the cross-correlation coefficient takes the cor-

relation coefficient in shifting the time for one of two

sets of time series data, it is given by the following equa-

tion.

x(t) and y(t) are the time series data, Cxy the cross-corre-

lation function and Rxy the cross-correlation coefficient.

The relativity of the two sets of time series data and the

delay time can be found from the cross-correlation coef-

ficient. Similarly, the auto-correlation coefficient takes

the correlation coefficient in shifting one of the same two

sets of time series data, and the intensity of the periodic-

ity of the data and period can thus be found.

(11)

Cxy(τ) = E{ x(t)y(t + τ)} 

Rxy(τ) = 
Cxx(0)Cyy(0) 

Cxy(τ)

(12)

Cxx(τ) = E{ x(t)x(t + τ)} 

Rxx(τ) = 
Cxx(0)
Cxx(τ)

Fig. 5 Method for detecting root cause11) 
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of PID controller with negative feedback is given by the

following equation.

where kc, TI and TD are PID parameters and are propor-

tional gain, integral time and derivative time, respec-

tively. Ts is the sampling period, and e is the difference

between the set-point and the controlled variable.

If we take the difference between equation (17) and

equation (18), the predictive models are

and the fitness function for system identification using

GA is defined as follows.

For the process given by equation (19), equation (20)

and the predictive model for the controller, parameters

a1, a2, b0, b1, d, kc, TI and TD are composed as a gene se-

quence shown in Fig. 8, and randomized genes are gen-

erated. Selection, crossover and mutation procedures

are carried out repeatedly, and the parameter sequence

(19)

(20)

ŷ(t) = y(t – 1) – a1 Δy(t – 1) – a2 Δy(t – 2)

+ b0 Δû(t –  d – 1) + b1 Δû(t –  d – 2)

û(t –  d – 1) = u(t –  d – 2)

– kc Δy(t –  d – 1) + kc e(t –  d – 1)

– kc Δ{ y(t –  d – 1) – y(t –  d – 2)}
TI

Ts

Ts

TD

(21)f = Σ  [{ ̂y(t) – y(t)}2 + {û(t –  d – 1) – u(t –  d – 1)}2]
t=d+1

τ

(18)Δu(t) = 

e: = r(t) – y(t) 

e(t) – kc y(t)Δ + Δ2

TI

kc · Ts

Ts

TD

sides Discrete GA dealing with discrete values, there is

Real-corded GA which is composed of real number val-

ues. This has the merit of being able to apply the same

algorithm not only to linear systems, but also to opti-

mization problems that include nonlinear functions, dis-

crete values and integer values.

As shown in Fig. 7, the controller model and process

model are identified from plant operation data using GA.

The process assumes the following to be approximated:

below the second-order delay + dead time system that

includes an integral. The controller is assumed to be a

PID controller.

Here, s is the Laplace operator, and K, T and L are the

system gain, time constant and dead time, respectively.

Case 1 through Case 4 can be expressed as the following

equation if converted to a discrete time system.

where ξ is noise and Δ is the differential operator, a

and b are system parameters, and for Case 1, a2 = 0, for

Case 3, a1 = −1, a2 = 0, and for Case 4 a2 = −(a1 + 1).

Case 2 has no constraints. Equation (17) is known as a

Controlled Auto-Regressive and Integrated Moving Av-

erage (CARIMA) model, and it is often used as one of

the system identification methods.

On the other hand, the I-PD controller which is a kind

(14)

(15)

(16)

(13)Case1: e –Ls

e –Ls

e –Ls

e –Ls

Case2:

Case3:

Case4:

(1 + Ts)
K

(1 + T1 s)(1 + T2 s)
K

Ts
1

s(1 + Ts)
K

(17)
y(t) = – a1 y(t –1) – a2 y(t – 2)

+ b0 u(t – d – 1) + b1 u(t – d – 2) +   
Δ
ξ(t)

Fig. 7 Identification structure based on GA10) 
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From this and Equation (22) the following is obtained

as a control row that minimizes Equation (24).

If the second term in Equation (27) is replaced by a

static gain, we have

and from the relationship with Equation (23), the PID

parameters can be found from the following equation.

Next,  a method for finding the weight parameter λ
that minimizes the sum I (λ) of variances for difference

e and manipulated variable Δu is described.

K is system gain, and the following relation holds true

for difference e and manipulated variable Δu in a steady-

state condition.

If at this time the variants for each are calculated

using the H2 norm, Equation (30) becomes:

The λ that minimizes Equation (34) is found, and the

values for E(z–1) and F(z–1) are calculated. Finally, the

optimal PID parameters are calculated.

3. Example of Application

An example of controller tuning in a real plant using

this method is shown. We carried out liquid level control

tuning based on the result calculated by PID Tune, and

achieved the stabilization shown in Fig. 9.

(28)F(z–1 )y(t)+{E(1)B(1)+λ}Δu(t)– P(1)r(t)= 0

(29)

kc =  –  (  f1 + 2 f2 )

TI =  –   Ts 

TD =  –   Ts 

E(1)B(1) + λ
1

f0 + f1 + f2 

f1 + 2 f2 

f1 + 2 f2 

 f2 

(30)I(λ) = E[e2(t)] + K 2E[Δu(t)2]

(32)

(33)

(31)e(t) =  –  ξ(t)

Δu(t) =  –  ξ(t)

T(z–1 )
1

T(z–1 )

T(z–1 ) = ΔA(z–1 ) + z–1 B(z–1 )C(z–1 )

C(z–1 )

(34)I(λ)’ = ǁ – ǁ   + K 2 ǁ – ǁ2

2

2

2

T(z–1 )
1

T(z–1 )
C(z–1 )

(27)F(z–1 )y(t)+{E(z–1 )B(z–1 )+λ}Δu(t)– P(1)r(t)= 0

that minimizes the fitness function in equation (21) can

then be found.

2. PID parameter tuning

Next,  a method for calculating optimal PID parame-

ters from the process model found by system identifica-

tion based on generalized minimum variance control

(GMVC) is discussed. The discrete time process model

in equation (17) can be rewritten as

and the controller in equation (18) as

The GMVC evaluation criteria16) is

and the polynomial expression for P(z−1) is designed as

follows.

where λ is the weight parameter, α a parameter express-

ing the rise-time and μ a parameter expressing the at-

tenuation characteristics of the response. It is desirable

for α to be 0.3 to 1.0 times the total of the time constant

and dead time, and here it is set at 0.75. μ is adjusted by

δ, and δ is set at 0.0. The Diophantine equation that

takes dead time into consideration is given by the fol-

lowing equation.

(25)P(z–1 ) = 1 + p1 z–1 + p2 z–2

p1 = –2e

p2 = e

ρ : = Ts/α
μ : = 0.2(1 – δ) + 0.51δ

cos ρ
2μ

4μ – 12μ
ρ

μ
ρ

(24)J = E [{P(z–1 )y(t +  d + 1) + λΔu(t) – P(1)r(t)}2]

(22)A(z –1)y(t) =  z –(d+1)B(z –1)u(t) + ξ(t)/Δ

A(z –1) =  1 + a1 z –1 + a2 z –2

B(z –1) =  b0 + b1 z –1

(23)C(z –1)y(t) =  Δu(t) – C(1)r(t) = 0

C(z –1):  =  kc z –1 + z –21 +  +  – 1 + 
TI

Ts

Ts

TD

Ts

2TD

Ts

TD

(26)P(z–1 ) = ΔA(z–1 )E(z–1 ) +  z–(d+1)F(z–1 )

E(z–1 ) = 1 + e1 z–1 +  … + ed  z–d

F(z–1 ) = f0 + f1 z–1 +  f2 z–2
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Applications in Real Processes14)

Finally, an example of improving the control plant-

wide using the control performance diagnosis system

and PID tuning tool are introduced.

We implemented these in two plants with around 170

loops and worked on improvements. In the loops diag-

nosed as having control problems, the 33 loops and 72

loops that underwent PID tuning are compared in Fig.

10. One can see that overall control performance was

improved by the tuning.

In addition, in a distillation process where multiple os-

cillations were found in the same period, the loops caus-

ing problems were identified using the control

performance diagnosis system. An example of stabiliza-

tion by PID tuning is shown in Fig. 11. The oscillation

disappeared, and the process as a whole was stabilized.

Furthermore, several loops with suspected valve fail-

ures were detected, and valve inspections were carried

out on these loops. Cleaning and maintenance were per-

formed on ones that were dirty inside, and positioners

were installed in valves that had no positioners installed.

Fig. 12 is an example of the improved control with the

installation of a valve positioner.

Conclusion

In this article, we have given an introduction to the

technical background of our control performance diag-

nosis system (PID Monitor) and PID tuning tool (PID

Tune) as well as an example of application in a real

plant. These systems are useful to improve the control-

lability of entire plants, and now, we are moving forward

Fig. 9 Result of tuning (liquid level control)10)
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with deploying them company-wide as tools for main-

taining productivity in plants.

These have been found to be powerful tools not only

for control improvements in existing plants, but also for

stabilization of new plants in the short term. In addition,

we have better records on not only chemical plants and

petrochemical plants this time, but also oil refining

plants. We would like to move forward while aiming at

improving the functions and expanding the range of ap-

plications.
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