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Introduction

A computer color matching (CCM) or computerized

colorant formulation system based on the 2-flux theor y

have been developed in this company1). These compu-

tation modules became central to the quality manage-

ment process of pigments and dyes while stimulating

development in pigment and dye based applications.

Now-a-days this technology is employed in the pr oduc-

tion of the color filters used in liquid crystal displays

(LCD) and the pigment resist needed to fabricate the

color filters. However, computation techniques more

sophisticated than the 2 flux theor y are needed to com-

pute the optical characteristics of the moder n high per-

formance diffusers, the anti-glare films and the high

color saturation, high contrast color filters. For exam-

ple, when the colorants are added in high concentra-

tions, the coherent interactions between light scattered

from constituent particles in particle aggregates have

to be taken into consideration. Also, when pigments are

dispersed in a medium containing high concentration of

dye, the absorption due to the medium (effect of the

imaginary par t of the r efractive index) can not be neg-

lected. Furthermore, it has become necessary to ana-

lyze the colorants that utilize the plasmon resonances

of metal nano particles. Here, we outline a simulation

scheme that combines various numerical techniques,

such as, Monte Carlo, finite-dif ference time-domain

method (FDTD) and multi-flux radiative transfer

method to compute the optical characteristics of slabs

of complex media as described above.

One can solve the scalar radiative transfer equation

(SRTE) to compute the reflection and transmission

spectra of a slab of random par ticulate medium under

coherent, incoherent or partially coherent illumina-

tion2). We implemented an N-flux version of SR TE for

this purpose3), 4). Each of the N fluxes represents colli-

mated or diffuse flux propagation in various angular

channels. Each angular channel is an annulus of solid

angle, specified by a unique polar angle, a given width

and spans over 2π azimuth angles (φ). The SRTE is

formulated in ter ms of the physically measurable

properties such as, the extinction and scattering

cross-sections or the phase function of the single in-

clusion that serves as the smallest scattering centre.

The extinction and scattering cross-sections or the

phase function of a single spherical scattering centre

can be computed analytically using the Mie theory5).

However, inclusions are not always spheres, and as

the concentration of inclusions increases the coherent
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interaction among particles becomes important. Even

at low concentration, homogeneous dispersion of in-

clusions throughout the binder medium cannot be en-

sured. If clusters of inclusions for m, the smallest

scattering centres may not be spherical. T o study the

effect of non-spherical scattering centres we propose a

novel computational method.

In case of inclusions with arbitrar y shapes and sizes

we use three-dimensional finite-difference time-domain

(FDTD) algorithm that is developed in-house. The

FDTD computes the scattered fields of an inclusion at a

near field point. The far-field scattering characteristics

can be computed using a near-to-far field transforma-

tion integral. In case of inclusions made of noble metals

a recursive convolution FDTD (RC-FDTD) is used 6), 7).

The RC-FDTD implements the 1st order Drude model

to account for the wavelength dependence of the metal

dielectric constant.

To compute the r eflection or transmission character-

istics of a slab that contains clusters of inclusions, we

first generate a random cluster of inclusions8). We use a

random number generator algorithm to generate a ran-

dom configuration of inclusions. We compute the ex-

tinction and scattering cr oss-sections or the phase

function for this computationally generated cluster

using the FDTD and the near-to-far field transformation

integral. The scattering characteristics are averaged

over many clusters each containing different random

configuration of inclusions. Finally, the average values

of scattering characteristics are used in the SRTE for-

mulation to determine the reflection or transmission

spectra of the slab. This computational scheme actually

suggests a way to incorporate FDTD r esults into an N-

flux formulation of SRTE.

Since our actual computation method is a combina-

tion of different numerical methods, we include brief in-

troduction of each constituent method. The paper is

organized in the following way , in Section 2, we briefly

introduce the N-flux formulation and solution technique

for the scalar radiative transfer equation (SRTE). Sec-

tion 3 discusses a brief introduction to the in-house RC-

FDTD algorithm implementing 1st order Drude model.

The corresponding FDTD update equations for the

non-dispersive or dielectric case are also pointed out.

The overall computation scheme to incorporate FDTD

results in SRTE formulations will be described in Sec-

tion 4. Section 5 details the r esults of numerical experi-

ments with the simulation method proposed in this

paper. Finally, we discuss the conclusions in Section 6.

N-Flux Scalar Radiative Transfer Equation

1. Formulation

The SRTE is a mathematical representation of en-

ergy conser vation principle. It deals with the transpor t

of a scalar quantity called ‘flux’, which is a measur e of

energy associated with the incident or scattered light,

through the random medium.

To formulate the energy transport equation associ-

ated with propagation of radiation through a discrete

random medium, let us consider a cylindrical volume el-

ement, length of which is dτ and the cross-sectional

area is dA. τ is known as the optical depth or optical

thickness and is the product of the physical thickness

or distance (x) and the number of scattering centres per

unit volume of the medium. The light that is pr opagat-

ing in this volume element can be either coherent or in-

coherent. Coher ent and incoher ent fluxes ar e

associated with the collimated and dif fuse parts of inci-

dent light respectively. The reason for separating these

two fluxes is physical. Collimated and dif fuse fluxes be-

have differently. The collimated flux can only be lost

from the volume element while diffused flux can both

be lost and gained. Two physical mechanisms are re-

sponsible for this flux loss and gain: one is absorption,

other is scattering. These two effects are accounted for

by scattering and absorption cross-sections of the inclu-

sions respectively, assuming that the host matrix is

both absorption-free and scattering-free. Also, for the

diffuse flux the gain can be due to the scattering of the

collimated flux within the same volume element or the

scattering of the diffuse flux in neighboring volume ele-

ments.

Let us denote the forward moving (+x) collimated

flux by fc+, the backward moving (–x) collimated flux by

fc–, the forward moving (+x) diffuse flux by fd+, the back-

ward moving (–x) diffuse flux by fd–. However, in case of

diffuse flux, to account for directional propagation we

assign a symbol f i
d+ to represent the forward moving

flux in the i th direction. In our case the i th direction is

called the i th channel, defined by an annulus of solid

angle δωi, specified by a polar angle θi, a width δθi and

spanning over the entire range of the azimuth angles

(φ) from 0 to 2π. Thus, we defined N–1 channels for the

propagation of the diffuse flux. The channel indices 1 to

N/2–1 are associated with the for ward moving dif fuse

fluxes. The rest of the channels are for the backward

moving diffuse flux. 0th and N th channels are reserved

for the collimated flux propagating in the forward and
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The first term on the right hand side of Eq. (4) accounts

for the loss of flux due to absorption. The second term

on the right hand side of Eq. (4) is associated with the

loss of flux due to scattering of light out of the i th chan-

nel to all the other dif fuse channels. p( n̂ j , n̂i) is the

phase function, that gives the scattered intensity in

channel j when the scattering centr e is in channel i. n̂i

and n̂j are two unit vectors along i and j directions re-

spectively. The third term on the right hand side of Eq.

(4) gives the flux gain in the i th channel due to the scat-

tered light coming from all the other j channels. p(n̂i,

n̂j) is the phase function giving the amount of light that

is scattered in channel i when the light is incident on a

scattering centre in channel j. n̂i and n̂j are two unit vec-

tors along i and j directions respectively. The fourth

and fifth terms on the right hand side of Eq. (4) give the

flux gain due to scattering of forward and backward

moving collimated fluxes respectively.

A flux balance equation similar to Eq. (4) for the

backward-moving diffuse flux ( fd–) is given by

The scattering coefficients S1i and S2i are related to the

coefficients S1 and S2 in Eq.s (2) and (3). The explicit

expressions for K, S1i and S2i will be discussed in Sec-

tion 2.3.

For brevity, at this point we introduce following nota-

tions; μi is used for cosθi, and pij for p(n̂i, n̂j). The ex-

plicit expr essions for pij will again be defer red to

section 2.3. The integrals in Eq.s (4) and (5) can be

evaluated using numerical integration techniques.

Gaussian Quadrature is one of the well known numeri-

cal methods used for this purpose [8]. The method is

preferred in this context since it gives exact answer

when Legendre polynomials ar e integrated. In general

pij s can be expanded in terms of Legendre polynomials.

Using our abbreviated notations and replacing the inte-

gral by a summation, Eq.s (4) and (5) ar e combined to

obtain the following equation:

In Eq. (6), wj s are the weights obtained from the

standard tables [8], suitable for the sampling points

(Eq. 5)

= – ∫ p(n̂j, ̂ni)dωj ––
dx
df i 

d–

|cosθi|
K f i 

d–

4π
1

|cosθi|
f i 
d–

j
j≠ i

∫ p(n̂i, ̂nj)dωj  + S1i fc–  + S2i fc++
4π
1

|cosθj|
f j 
d±

j
j≠ i

(Eq. 6)

= – Σ pji δωj   –±
dx
df i 

d±

|μi|
K f i 

d±

4π
1

|μi|
f i 
d±

j=1
j≠ i

N–1

Σ |μj|
wj f j 

d±

j
pij δωj  + S1i fc± + S2i fc ±+

4π
1

backward directions respectively. Using our notations a

column vector F, can be defined, the elements of which

represent the collimated and the diffuse fluxes in differ-

ent channels as follows

Taking the loss of collimated flux due to scattering

and absorption into consideration, we can write the flux

balance equation for channel 0 as follows:

where represents the rate of change of forward

moving collimated flux per unit length. The first term

on the right hand side of Eq. (2) accounts for the loss of

flux from the channel by absorption. The last two terms

represent the total loss of flux from the channel by scat-

tering. The first scattering coefficient S1 accounts for

the flux loss fr om channel 0 to all the for ward moving

diffuse channels identified by indices 1 to N/2–1. The

second scattering coefficient S2 accounts for the flux

loss from the channel to all the backward moving dif-

fuse channels identified by indices N/2 to N–1. k, S1 and

S2 can be computed in terms of the absorption and scat-

tering characteristics of a single particle. Explicit ex-

pressions for k, S1 and S2 are given in Section 2.3.

The flux balance equation for N th channel (for ward

moving collimated flux) as follows:

where the extra ‘-’ sign on the left hand side of Eq. (3)

accounts for the backwar d propagation of the flux.

Other symbols have the same physical meaning as in

Eq. (2).

The flux balance equation for the i th forward moving

diffuse channel is given by

(Eq. 3)= –kfc– –S1 fc– –S2 fc––
dx
dfc–

(Eq. 1)F =

f c+

f 1 
d+

…

f N/2–1 
d+

f N/2 
d–

…

f N–1 
d–

f c–

dx
dfc+

(Eq. 4)

= – ∫ p(n̂j, ̂ni)dωj  –
dx
df i 

d+

|cosθi|
K f i 

d+

4π
1

|cosθi|
f i 
d+

j
j≠ i

∫ p(n̂i, ̂nj)dωj  + S1i fc+ + S2i fc–+ 4π
1

|cosθj|
f j 
d±

j
j≠ i

(Eq. 2)= –kfc+ –S1 fc+ –S2 fc+dx
dfc+
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employed to evaluate the integral. The finite solid

angle δωj associated with j th propagation channel is

defined as

Equations (2), (3) and (6) can be written in a compact

form using matrix notations as follows:

where F is the column vector given in Eq. (1) and M is

the coef ficient matrix. Explicit expr essions for the ele-

ments of M can be obtained by expanding Eq.s (2, 3)

and (6).

2. Solution method

Equation (8) represents a linear set of dif ferential

equations, general solution of which is given by

where λj’s are the eigenvalues and Aij s are the elements

of the eigenvector cor responding to the coef ficient ma-

trix M. cj s are constants computed using the boundary

conditions, i.e., the reflectivity values at the two inter-

faces of the slab.

In general, two boundar y conditions ar e obtained at

two interfaces of the slab for each pair (for ward and

backward moving) of collimated and dif fuse fluxes.

Boundary conditions for each channel are constructed

by equating the total forward-moving flux in that chan-

nel to the total backwar d-moving flux in the same

channel. We assume that the light from the source en-

ters the random medium of the slab thr ough the first

interface ( x = 0 ) and leaves thr ough the last inter face

(x = d). If the total input flux (collimated + diffuse) is 1,

Φc is the collimated fraction of total input flux, then

(1 – Φc) is the diffuse portion of the input flux. Rc is the

Fresnel reflectivity of any of the slab interfaces. Rs is

the reflectivity of the back plane for the collimated flux.

For the collimated flux pair, we can write following two

boundary conditions, at the first and the second inter -

faces respectively of the slab

(Eq. 8)=MF
dx
dF

(Eq. 9)Fi =Σ Aijc jeλ j x, i = 0, 1, ……, N
j=0

N

(Eq. 10)

(Eq. 11)

fc+(0) = Фc(1 – Rc) + Rc fc–(0)

fc–(d) = Rs  fc+(d)

(Eq. 7)δωj = 2π sinθj δθj  

The boundar y conditions for the dif fuse fluxes ar e

given by

In Eq. (12), Di is the dif fuse flux input in the i th chan-

nel inside the slab, ri is the reflectivity at the first sur-

face for the dif fuse flux propagating in the i th channel.

Ril is the fraction of for ward moving dif fuse flux in l th

channel that is reflected at the last inter face and enters

the i th channel.

d in Eq.s (11) and (13) is called the optical thickness

and is given by

where m is the number of scattering centres per unit

volume of the random medium, Cext is the extinction

cross-section and t is the physical thickness of the slab.

3. Computation of k, S1, S2, K, S1i, S2i , and

p (n̂i , n̂j )

Albedo, a0 of a single particle is defined as the ratio of

the scattering efficiency (Qscat) and the extinction effi-

ciency (Qext) and is given by3)

In case of spherical par ticles, a0 is computed using Mie

analytical theory4).

k in Eq.s (2) and (3) can be shown to be the ratio of

the extinction efficiency (Qext) and the absorption effi-

ciency (Qabs) of a single scattering centre3). k is given by

The difference between extinction efficiency and ex-

tinction cross-section is that the former is a number and

thereby dimensionless while the later has the dimen-

sion of ar ea. Following r elation holds between Cext and

Qext :

The sum of S1 and S2 in Eq.s (2) and (3) is equal to a0
3).

S1 is given by

(Eq. 14)d = (mCext)t

(Eq. 15)a0 = Qext

Qscat

(Eq. 16)k =
Qscat

Qabs

(Eq. 17)Cext = Qext 4π
λ2

(Eq. 12)

(Eq. 13)

f i 
d+(0) = Di + ri f N–1–i 

d– (0) , i = 1, …, N/2 – 1

f i 
d–(d) = Σ  Ril  f l 

d+(d) , i = N/2, …, N – 1
l = 1

N/2–1
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al s are obtained from following normalization inte-

gral,

All al s are normalized by a0. In Eq. (24), p0(θ) is com-

puted using the angle dependent scatter ed intensity as

follows,

where Es is the θ-dependant par t of the scatter ed elec-

tric field at a point far (kr >> λ) from a scattering centre.

S1i and S2i are computed as follows

Eq.s (26), and (27) show that S1i and S2i are the frac-

tion of scattered light entering the i th channel from 0th

and N th channels respectively.

For spherical inclusions, Mie analytical theory can

be used to compute Cscat , Cext and Es as a function of

operating wavelength, radius and refractive index of

inclusions. In case of non-spherical inclusions, a com-

bination of FDTD with far-field method can be used to

compute the above quantities numerically.

In all calculations presented here the widths of the

propagation channels are unequal and are determined

using Gaussian quadrature sampling points. The view-

ing directions outside the slab are computed using the

Snell’s law from inner propagation channels. Mathcad

application software is used to write the SRTE code.

Recursive Convolution Finite-Difference Time-

Domain Method

1. Near-field generation

The 3D Finite-dif ference time-domain (FDTD)

method is used to compute the scattering characteris-

tics of a non-spherical inclusion. The program imple-

ments the 1st order Drude model permittivity for noble

metals using a recursive convolution framework. The

3D program is an extension of our 2D algorithm imple-

menting Maxwell’s equations.

Maxwell’s equations for materials with fr equency de-

pendent dielectric constant are given by

(Eq. 25)p0(θ) = |Es|2 sinθ

(Eq. 26)S1i = p(cosθi, 1)δωi

(Eq. 27)S2i = p(cosθi, –1)δωi

4π
1

4π
1

(Eq. 24)al = ∫  p0(θ)Pl (cosθ)d(cosθ)
–1

1

a0

(l + 0.5)S2 is given by

S1 and S2 estimate the amount of light that is scatter ed

from the collimated channel to the diffuse channels.

Wl s are given by4)

The coefficients al s are obtained a normalization of the

phase function, as explained below.

We use K = 2k, when the specific intensities ar e com-

pletely diffuse and almost isotropic. p(n̂i, n̂j) (or, pij in

compact notation) is a function of cosγ, γ being the

angle between n̂i and n̂j . Expressing the phase function

as a sum of Legendr e polynomials we can write the fol-

lowing

where the symbol Pl stands for Legendre polynomial of

order l, and al is the l th coefficient. cosγ is given by

Since our propagation channels are not φ dependent, a

phase function obtained by integrating Eq. (22) w.r.t φi,

φj would be sufficient for our purposes4). Hence, inte-

grating Eq. (22), we obtain

The values of al and the total number of Legendr e

polynomial ter ms, L depend on the scattering char-

acteristics of individual scattering centr es. Scatter-

ing due to transpar ent, spherical par ticles of size

larger t han t he o perating wa velength i s m ostly

anisotropic in nature, i.e., light is mostly scattered in

the forward direction. Hence in this particular case,

L is taken to be half the total number of diffuse chan-

nels10). In case of isotropic scattering, L may not be

that large.

(Eq. 20)

Wl = for

for

l = 1

l ≥ 3 

2
1

=
(l + 1)(l – 1)……2

(–1)(–3)……(–l + 2)

(Eq. 21)p(n̂i, ̂nj) = Σ al Pl(cosγ)
l

(Eq. 22)

cosγ =  ̂ni · ̂nj  = cosθi cosθj  + sinθi sinθj cos(φi – φj)

(Eq. 23)p(n̂i, ̂nj) = Pij  = Σ al Pl (cosθi)Pl (cosθj)
l

L

(Eq. 18)S1 = 0.5 a0 +  Σ  alW
2 
l 

l=1,l odd

L

(Eq. 19)S2 = a0 – S1
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where μM is the magnetic permeability, taken to be

constant and equal to vacuum permeability, H is the

magnetic vector, is the vector

differential operator, × stands for vector curl operation.

In this notation ∂t denotes ∂/∂t. D is the displacement

current, given by

where E is the electric vector and ε is the dielectric con-

stant. The time domain behavior of D is obtained by

taking the inverse Fourier transform on both sides of

Eq. (30), and using the convolution theorem. We find6)

where ε(t) = F–1 {ε(ω)}, and F–1 denotes the inverse

Fourier transform operator.

In the first-order Drude model, ε(ω) is given by

where ωp is the plasma frequency, vc is the collision fre-

quency, ε∞ is infinite frequency dielectric constant and

equal to 1 and χ(ω) is the susceptibility. Taking the in-

verse Fourier transform of χ(ω) we find6),

where U(t) is a unit step function defined by

In order to evaluate Eq. (31), we first r eplace ε(τ) by

the inverse Fourier transform of ε(ω). The resulting

form is discretized in keeping with FDTD time step-

ping scheme. If Δt is the minimum time step, and if n

represents the total number of time steps correspon-

ding to time instant t, then t = nΔt. Taking field E to be

constant over any single interval [mΔt, (m + 1)Δt],

where m ∈ 0, …, n, the integral in Eq. (31) reduces to a

partial summation as follows: 6)

(Eq. 30)D(r, ω) = ε(r,  ω)E(r,  ω)  

(Eq. 31)D( t ) = ∫ ε(τ)E(t – τ)dτ
0

t

(Eq. 32)ε(ω) = 1 + = ε∞ + χ(ω)
ω(ivc – ω)

ω 2 
p

(Eq. 33)χ( t ) = [1 – e–vct ] U( t )
vc

ω 2 
p

(Eq. 34)
U( t ) = 0 if t = 0, 

 = 1 t > 0

(Eq. 28)μM ∂t H(r, t) = –∇ × E(r,  t) 

(Eq. 29)∂t D(r, t) = ∇ × H(r,  t) 

∇ ≡  ̂x +  ̂y
∂x
∂

∂y
∂ +  ̂z

∂z
∂

Equation (35) can be written in the following compact

form

where,

The vector quantity, Ψ, is known as the accumulation

field.

The update equation for the magnetic field is given

by

The superscripts n , n+1/2 or n–1/2 represent the time

steps at which corresponding quantities are evaluated.

d is the 2nd order accurate, central, finite-dif ference ap-

proximation of the vector dif ferential operator (∇). d is

of the form (d ≡ x̂dx + ŷdy + ẑdz), where dx f(x, y, z) is

given by

Following Eq. (39), similar expressions can be written

for dy f(x, y, z) and dz f(x, y, z). Δt and h are the time and

space steps respectively.

In the non-dispersive case of FDTD, the update equa-

tion for the magnetic field will be the same as Eq. (38).

The update equation for the electric field is given by

The superscripts n+1, n , and n+1/2 indicate the time

steps at which corresponding quantities are evaluated.

ε∞ is the infinite frequency dielectric constant and is

taken to be 1. ε0 is the dielectric constant of vacuum and

is taken to be 1.

Ψn+1 – Ψn in Eq. (40) is computed using a r ecursive

equation obtained using Eq. (37) and is given by

(Eq. 37)

Ψn = Σ En–m  ∫    χ(τ)dτ
m=0

n–1

mΔt

(m+1)Δt

 = Σ En–m Δt + 
m=0

n–1

vc

ω 2 
p

vc

e–vc(m+1)Δt – e–vc(m)Δt

(Eq. 38)Hn+1/2 = Hn–1/2 d × En

μM h
Δt

(Eq. 39)dx f (x, y, z) = f (x + h/2, y, z) –  f (x – h/2, y, z)

(Eq. 40)En+1 = En –  (Ψn+1 – Ψn) + d × Hn+1/2

ε∞

1
ε0 ε∞ h
Δt

(Eq. 41)Ψn+1 – Ψn = c1 En + c2 [ Ψn – Ψn–1 ]

(Eq. 35)Dn = ε0 ε∞En + ε0 Σ En–m  ∫    χ(τ)dτ
m=0

n–1

mΔt

(m+1)Δt

(Eq. 36)Dn = ε0 ε∞En + ε0 Ψ
n
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ward at each point on S, the near-to-far field transforma-

tion integral is given by

The integral in Eq (45) is numerically evaluated by tak-

ing 180 samples in polar angle θ and 36 samples in the

azimuth angle φ.

Simulation method

The simulation method consists of following steps:

1) Monte Carlo method

2) Numerical computation of extinction and scatter-

ing cross-sections and the phase function

Details of computation steps ar e described in following

subsections.

1. Monte-Carlo method

We generate a cluster by impr egnating a spher e

made of the binder medium, with randomly distributed

metal particles. A random number generator generates

random particle configurations. The random number

generator is a computer code that outputs pseudo-ran-

dom numbers drawn from a uniform distribution12). In

this work the random number generator is used to gen-

erate a random spatial distribution of inclusions. To

change the configuration, each time, the random num-

ber generator is called with a new seed. The seed is set

to be equal to the cur rent time obtained fr om the com-

puter clock.

2. Numerical computation of extinction and scat-

tering cross-sections and the phase function

A 3D FDTD algorithm implementing 1st order Drude

model is employed to compute the extinction, scatter-

ing cross-sections and the phase function due to this

cluster of metal particles. The extinction efficiency is

computed as follows11)

where Ei and E*s are the incident field vector and the

complex conjugate of the scatter ed field vector r espec-

tively, computed at a far-field point of the cluster in the

forward scattering dir ection (θ = 0°, θ being the polar

angle). Angular brackets denote an average over one

time period. v and Ii are the speed of light and incident in-

tensity respectively. The scattering efficiency is given by

(Eq. 48)∫  
S

E(R) = ∇E – E ∇ · ̂n dS
Σ
1

R
eikR

R
eikR

(Eq. 49)Qext = – Re (Ei 
 · E*s )θ = 0°8π Ii

(4π)v

Ψ at zero-th and all negative time steps ar e identically

zero. Ψ at any positive time step can be obtained using

Eq. (41). Physically Ψ represents a convolution of elec-

tric field and dielectric constant of metal. c1 and c2 in Eq.

(41) are given by

The update equation for the electric field in case of

non-dispersive FDTD is given by

We computed c1 and c2 at each wavelength using meas-

ured value of complex metal dielectric constant. If ε(ω)

is the dielectric constant of metal at a frequency ω, then

we can write

where ε1(ω) and ε2(ω) are the real and imaginar y parts

respectively. c1 and c2 can be expressed in terms of

ε1(ω) and ε2(ω) as follows

This RC-FDTD algorithm is developed for monochro-

matic applications and the incident field is generated

with a pair of current sources. The scattered field at

each grid point is computed as follows:

where Es, Et, and Ei are the scattered, total and incident

electric field vectors respectively.

2. Near-to-far field transformation

RC-FDTD can only be used to generate the near field

values. Hence, we used a Rayleigh-Sommerfield inte-

gral to generate the far-field fr om the near field values

obtained using FDTD. E(R), an electric field compo-

nent (scalar) computed at a far-field point by numeri-

cally integrating the near field values E, generated by

FDTD on the sur face of a r ectangular parallelepiped S

(surface area = Σ) enclosing the scatterer11). R is the ra-

dial distance of the far-field point fr om any point on the

surface of integration. If n̂ is the unit normal drawn out-

(Eq. 43)En+1 = En +  d × Hn+1/2

ε0  h
Δt

(Eq. 44)ε(ω) = ε1(ω) + iε2(ω) 

(Eq. 45)

(Eq. 46)

c2 = e 

c1 = – ((1 – ε1 )2  + ε 2 
2 )[1 – c2 ]

1–ε1

ε2ω

ε2

ω

(Eq. 47)Es
 = Et

  – Ei  

(Eq. 42)c1 = (1 – e–vc), c2 = e–vc

vc

ω 2 
p
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fraction of inclusions is 0.259. The inclusion radius is

1.5µm. The slab width is 12µm.

In the first set of computed data (Computation 1), K =

2k, as mentioned in Section 2.3. In the second set of

computed data (Computation 2), K = 2Qabs. For both

sets of computed data, nm = 1.52, ns = 1.59 + i0.001 and

the incident illumination is taken to be completely co-

herent. Fig. 1 shows that the 1st set of computed data

are widely different from the measured data. The sec-

ond set of results can approximately predict the experi-

mental findings. The transmittance is shown as a

function of viewing angles (polar angle θ, correspon-

ding to dif ferent channels) outside the slab. The trans-

mittances in Fig. 1 are plotted in log scale.

The discrepancies between the computed and meas-

ured data might be traced to the inappropriateness of

the phase function. Since experimental set-up uses a

laser as the source of illumination, the experimental

phase function and scattering extinction cr oss-sections

are dif ferent from Mie analytical r esults which ar e ob-

tained for infinite, plane wave incidence. Fur thermore,

it should be noted that Mie analytical for mulae are con-

vergent for small par ticles, the same for mulae result in

divergent and non-stable values as the particle radius

increases. In addition, some discr epancies are found in

the measured data, hence there is a need for more ac-

curate and reliable measurement data.

To demonstrate the usefulness of the computation

scheme developed here, we compute the transmittance

spectrum of a slab containing non-spherical scattering

The far fields in Eq.s (49) and (50) are computed

using FDTD and Eq. (48). The phase function is com-

puted using Eq. (25), where the scattered electric field

Es is computed in the far-field as a function of the polar

angle θ.

The cross-sections and the phase function are com-

puted for m different random distributions of the par ti-

cles in the cluster. Finally, these quantities, averaged

over all m distributions, are used to compute the scat-

tering and absorption coef ficients (Section 2.3) used in

the SR TE for mulations. This is done to simulate a

medium where an average cluster serves as a single

scattering centre.

Results and discussion

It turns out that the SRTE formulation outlined in

this paper is suitable for diffuse illumination. For coher-

ent illumination, such as that due to laser , the parame-

ter K used in Eq. (6) has to be changed. K is also

related to the absorption coefficient of the material of

the par ticles. These facts become evident fr om Fig. 1,

where, we compute the angular spectrum of dif fuse

transmittance of a dielectric slab impr egnated with

spherical inclusions of non-absorbing material. Results

are computed using a 42-channel SRTE, where the 40

diffuse channels are defined by the Gaussian quadra-

ture points for the polar angle θ. The 0th and 41st chan-

nels ar e r eserved for collimated transmission and

reflection respectively. The number of Legendre poly-

nomial terms in the expansion of the phase function is

taken to be 20. The number of Bessel function and Le-

gendre polynomial terms in the expansion of Mie analy-

sis is determined as a function of the inclusion radius 4).

In this case, the phase function and the extinction, scat-

tering cross-sections of individual scattering centres

are computed analytically using the Mie theory5). The

computed angular spectr um is compared with the data

obtained experimentally.

In case of experiment following specifications are

chosen: the refractive index of the dielectric material of

the slab is nm = 1.53. The slab material is impr egnated

with dielectric spherical inclusions of refractive index ns

= 1.59. The transmittance is recorded at 2° interval of

the viewing angle outside the slab. Laser beam at

540nm wavelength is used as the incident light. Volume

(Eq. 50)
φ=0

2π

θ=0

π

Qs = ∫     ∫   |Es|2 sin θ dθ dφ
8π Ii

v

Fig. 1 shows the comparison between the com-
puted and measured angular spectra of 
diffuse transmittance of a slab, containing 
monodisperse spherical inclusions of 
radius 1.5µm as a function of viewing 
angles. 
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the spherical volume that contains all the metal inclu-

sions in one cluster.

Slab thickness is 1µm. In case of Mie computation

(dotted line) each par ticle is a spher e with radius

100nm of effective refractive index and Mie theory is

used to compute the cross-sections and the phase func-

tion. The effective refractive index of the sphere is com-

puted using Maxwell Garnet theory (MGT) assuming

all perfectly spherical inclusions11).

Fig. 3 indicates that FDTD computation yields a

smoother variation of transmission compared to that

obtained using MGT. We plan to measure the transmis-

sion spectra of films of metal paint to validate the accu-

racy and applicability of our approach.

centres resulting from cluster formation. In case of

cluster formation in the medium, we compute the scat-

tering characteristics (phase function and scattering,

extinction cross-sections) numerically using a combina-

tion of FDTD and a near-to-far field transformation inte-

gral (Section 3) of a computationally generated cluster

consisting of randomly distributed inclusions. The inci-

dent light is polarized along the x-axis and pr opagating

along the z-axis. The plane wave incident beam is simu-

lated by introducing periodic boundar y conditions over

the bounding faces of the computational domain those

are not normal to z-axis (bounding sur faces other than

those parallel to xy-plane). The computational domain

is terminated using absorbing boundary conditions

along the z-direction. The scattering characteristics are

averaged over 50 different random configurations of

clusters. In the example pr esented here we consider a

nanocluster of metallic inclusions.

Fig. 2 shows the cross-sections of a typical computer-

generated cluster in three orthogonal planes. The re-

fractive index of the sur rounding medium and the host

matrix is 1.5. The volume density of inclusions is 50%.

Radius of each inclusion is 10nm.

Fig. 3 shows the dif fuse reflectance spectra of a

slab illuminated using completely dif fuse light. For

each wavelength, dif fuse flux propagation is com-

puted in 40 channels. Data presented in Fig. 3, are

summed over all the 40 propagation channels for each

wavelength. The slab is made of r esin (r efractive

index = 1.5), impr egnated with silver par ticles [wave-

length dependent complex refractive indices are ob-

tained from Ref. 13]. V olume density of the silver

particles is 5%. In case of FDTD (solid line), each par-

ticle is a cluster made up of individual spherical inclu-

sions (radius 10nm). The volume density of the

inclusions in the cluster is 50%. The radius of the clus-

ter is 100nm. By cluster radius we mean the radius of

Fig. 2 The cross-sections of a cluster in three orthogonal planes; 
a) xy-plane, b) yz-plane, c) zx-plane. Black dots show the positions of inclusions.

c) a) b) 

Fig. 3 Diffuse reflectance spectra of a slab of a 
composite medium computed using the 
SRTE; 1) individual scattering centre is a 
sphere of effective refractive index com-
puted using MGT and the corresponding 
scattering characteristics are computed 
using Mie theory, 2) individual scattering 
centre is a cluster, corresponding scatter-
ing characteristics are computed using the 
FDTD and the near-to-far field transforma-
tion integral.
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Conclusions

In this paper we implement an N-flux SR TE to com-

pute the collimated and dif fuse reflection and transmis-

sion spectra of a slab of random medium. The medium

of the slab is for med by impr egnating a homogeneous

medium with random distribution of inclusions with r e-

fractive index different from the host medium. In case

of spherical inclusions the scattering characteristics

(scattering, extinction cross sections and phase func-

tion) used in SRTE formulations are computed using

Mie analytical theor y. In case of non-spherical inclu-

sions, we propose a numerical method incorporating

FDTD and a near-to-far field transformation to compute

the average scattering characteristics of a single scat-

tering centre. Finally, the numerically computed aver-

age scattering characteristics of a single scattering

centre are used in the SR TE formulation to obtain the

collimated or the angle-dependent dif fuse transmit-

tance. We demonstrate the application of our computa-

tion method for a slab consisting of metal nanoclusters

that ser ve as non-spherical scattering centr es. Al-

though, the results presented here concern metal clus-

ters only, the same approach can also be adopted in

case of non-metallic clusters and metallic or non-metal-

lic single particle inclusions of arbitrary shape.
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