
CSR REPORT 2010 DATA BOOK

SUMITOMO CHEMICAL

Responsible Care (RC) Activities

1	Management System2
2	Occupational Health and Safety
3	Environmental Preservation
4	Environmental Preservation in Logistics Operations 13
5	Process Safety and Disaster Prevention
6	Responsible Care Audits
7	Unification of Group Environmental Preservation Targets ······· 15
8	Others (tonics)

Responsible Care Activities

Management System —Introduction of Management System Based on International Standards

1. Environmental Management System (ISO 14001)

ISO14001:1996 certification was obtained at all Works between 1997 and 1999. From 2005 to 2006, these Works submitted to transitional inspections and obtained certification for ISO14001:2004, the revised version of ISO14001:1996. Among the Sumitomo Chemical Group companies, 22 domestic Group companies and 10 overseas Group companies had obtained ISO14001:2004 certification as of July 2009.

Acquisition of ISO14001 Certification for Sumitomo Chemical's Six Works

Works and Certificate Number	ISO14001:1996 Certification Date	ISO14001: 2004 Certification Date
Ehime Works (including Ohe Works) [JCQA-E-018]	April 1998	April 2006
Chiba Works [KHK-97ER-04]	June 1997	March 2006
Osaka Works (Kasugade) [JQA-E-90072]	November 1997	January 2006
Osaka Works (Gifu Plant) [JCQA-E-0206]	December 2000	December 2005
Osaka Works (Okayama Plant) [JCQA-E-0218]	January 2001	February 2006
Oita Works [JQA-E-90152]	March 1998	April 2006
Misawa Works [JQA-EM0355]	March 1999	February 2006

2. Quality Management System (ISO 9001)

Certification of compliance with ISO 9002:1994 was completed for all Works except the Osaka Works (Gifu Plant)* between 1994 and 1998. Sumitomo Chemical made the transition to compliance with ISO 9001:2008 in 2009-2010. The Ohe Works registered for ISO 9001:2008 in 2010.

Acquisition of ISO9000 Series Certification for Sumitomo Chemical's Six Works

Chemical's Six Works									
Works and Certificate Number	ISO9002:1994 Certification Date	ISO9001: 2008 Certification Date							
Ehime Works [JCQA-0019] [YKA-4004422/J]	October 1994 —	October 2009 August 2009							
Chiba Works [JQA-0829]	March 1995	April 2010							
Osaka Works (Kasugade) [JQA-0721]	December 1994	December 2009							
Osaka Works (Okayama Plant) [JQA-1650]	March 1997	April 2010							
Oita Works [JQA-1069]	December 1995	January 2010							
Misawa Works [JQA-0752]	December 1994	December 2009							
Ohe Works [JCQA-0320] [JCQA-1720]	April 1998 —	April 2010 January 2010							

^{*}The Osaka Works (Gifu Plant) has been pursuing Good Manufacturing Practice (GMP) management as have other Works, including the Osaka Works (Kasugade and Okayama Plants), the Oita Works and the Misawa Works

3. Occupational Safety and Health Management System (OSHMS)

The Chiba Works acquired Occupational Safety and Health Management System (OSHMS) certification, accredited by the Japan Industrial Safety and Health Association (JISHA), in May 2003, becoming the first plant in Japan to receive such certification.

In 2009, Sumitomo Chemical obtained this certification for all of its facilities (six Works and two Research Laboratories).

Acquisition of OSHMS Certification for Sumitomo Chemical's Six Works and Two Research Laboratories

JIX WOLKS GIRG TWO RESEGICTI EGDOLGIOTIES								
Facilities	Certificate Number	Certification Date						
Ehime Works	04-38-1	September 2004						
Chiba Works	03-12-1	May 2003						
Osaka Works (Kasugade)	05-27-3	February 2005						
Osaka Works (Utajima area)	09-27-14	January 2009						
Osaka Works (Gifu Plant)	19-21-6	February 2009						
Osaka Works (Okayama Plant)	09-33-7	February 2009						
Oita Works	06-44-1	July 2006						
Misawa Works	05-2-1	November 2005						
Ohe Works	10-38-4	March 2010						
Agricultural Chemicals Research Laboratory	07-28-9	January 2007						
Tsukuba Research Laboratory	05-8-3	December 2005						

4. Voluntary Safety Management of High Pressure Gas based on Certification by the Minister

To achieve safe operations, Sumitomo Chemical has obtained Accreditation of Completion and Safety Inspection as stipulated in the High Pressure Gas Safety Act for our 47 facilities. Certification for the Chiba Works, which has been certified since 1987, was renewed in May 2009. The Ehime Works which has been certified since 2002, was also renewed in March 2008. The plants of both Works have been continuing stable operations.

Ministerial certification is given to plants which have achieved excellent safety and management levels and meet legal requirements. Such plants are allowed to conduct their safety inspections on a voluntary basis.

In order to obtain ministerial certification, prior review is made by a special team including academic experts on the accuracy of daily safety inspection data and the safety management system. Every time, Sumitomo Chemical has been given high marks at the review for renewal of the certification.

Number of Accreditations of Completion and Safety Inspection Given for Sumitomo Chemical Facilities

Works	Area	Year and month renewed	No. of facilities given accreditation
Ehime Works	Niihama	March 2008	13
Enime works	Kikumoto	March 2008	6
Chiba Works	Anegasaki	May 2009	11
CHIDA WORKS	Sodegaura	May 2009	17

Occupational Health and Safety

(1) Criteria and Results of the President's Safety Award for Zero-Accident and **Zero-Lost Workday Operations**

Sumitomo Chemical has set facility-specific criteria for the achievement of continuous periods of zero accident and zero-injury operations for employees as well as contractors. The President's Safety Award is presented to facilities in recognition of their satisfaction of the above-mentioned criteria.

1. Sumitomo Chemical Employees

Facilities	Criteria for the President's Safety Award (Continuous periods of zero-accident, zero-lost workday operations)	Results
Ehime Works	3 million hours	Reached 3 million hours in April 2009
Chiba Works	3 million hours	Reached 3 million hours in August 2008
Osaka Works	3 million hours	Reached 6 million hours in January 2010
Oita Works	1 million hours	Reached 5 million hours in April 2010
Misawa Works	30 months	Reached 60 months in September 2008
Agricultural Chemicals Research Laboratory	30 months	Reached 270 months in December 2008
Tsukuba Research Laboratory	30 months	Reached 240 months in March 2009

2. Contractors/Affiliated Company Employees

Facilities	Criteria for the President's Safety Award (Continuous periods of zero-accident, zero-lost workday operations)	Results				
Ehime Association (Plant maintenance)	24 months	(Expected to reach the target of 24 months in November 2010)				
Ehime Logistics Association (Logistics)	24 months	Reached 24 months in November 2009				
Chiba Association (Plant maintenance)	24 months	Reached 24 months in January 2010				
Chiba Logistics Association (Logistics)	24 months	Reached 48 months in August 2008				
Osaka Association	24 months	Reached 24 months in July 2010				
Okayama Association	48 months	Reached 48 months in October 2008				
Oita Association	24 months	(Expected to reach the target of 24 months in January 2012)				
Misawa Association	48 months	(Expected to reach the target of 144 months in March 2011)				
Agricultural Chemicals Research Laboratory Association	48 months	(Expected to reach the target of 144 months in March 2011)				
Tsukuba Research Laboratory	48 months	(Expected to reach the target of 144 months in September 2011)				

(2) Safety Achievements of Group Companies

The number and rate of frequency of injuries resulting in lost workdays for fiscal 2009 at Sumitomo Chemical Group companies, excluding Sumitomo Chemical Co., Ltd., both slightly increased from the previous fis-

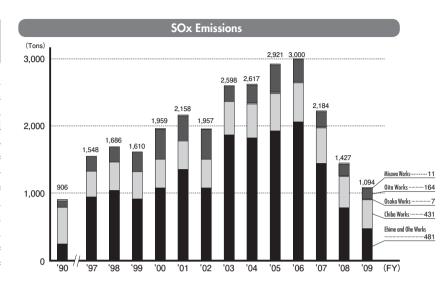
cal year. We aim to improve the safety achievement of the entire Group by promoting detailed information sharing on accidents throughout the Group.

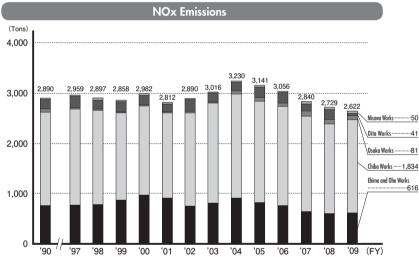

	Number of lost workday injuries	lost workday injuries
Y 2008	13	0.26
Y 2009	15	0.45
		FY 2008 13

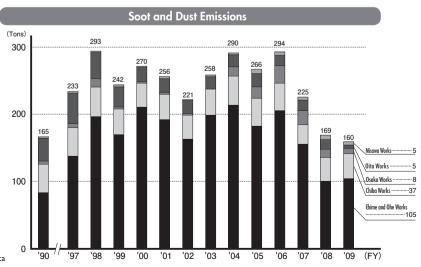
Environmental Preservation

Preventing Pollution

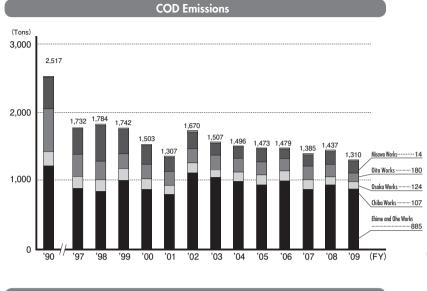
1. Atmospheric emissions of SOx, NOx, soot, and dust.

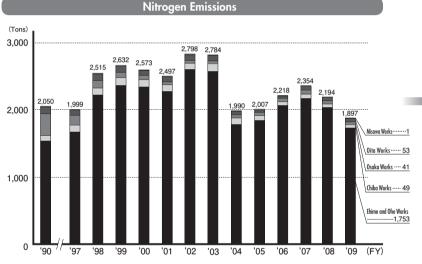

In 1970, Sumitomo Chemical achieved a marked reduction in the release of SOx, NOx, soot, and dust into the atmosphere, and continued to maintain low levels of emissions from 1980 to the present. Furthermore, the Company has concluded cooperative agreements with local municipal governments at each of its Works, establishing voluntary control levels that are stricter than the standards given under applicable laws and regulations.



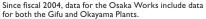

standard values

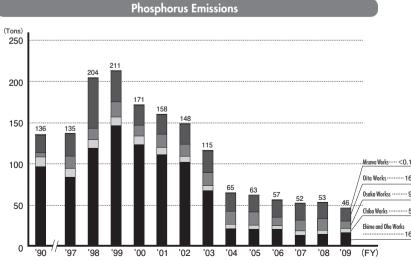
Since fiscal 2004, data for the Osaka Works include data for both the Gifu and Okayama Plants.

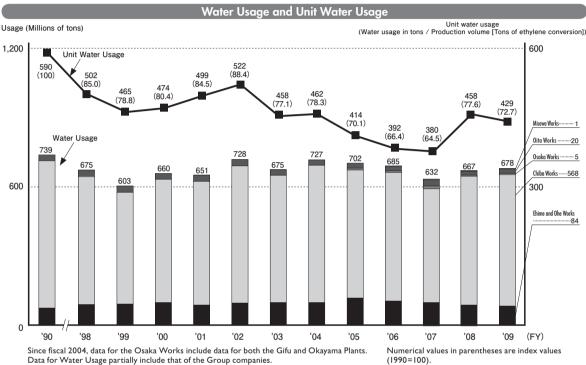


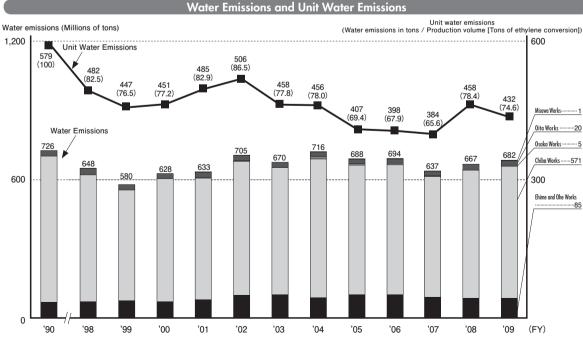

2. Water emissions of COD, nitrogen, and phosphorus

Sumitomo Chemical has also concluded cooperative agreements with local municipal governments to establish voluntary control levels for COD, nitrogen, and phosphorus released into waterways.


These standards are also stricter than those established under applicable laws and regulations. A number of measures have been implemented to cut emissions, in line with fifth-generation Water Quality Standards, and emissions of nitrogen and phosphorus in particular have been significantly reduced since fiscal 2004.


Target:Continue to sustain levels below voluntary control standard values




Promoting Efficient Use of Water

Sumitomo Chemical has endeavored to promote the efficient use of water as a precious and essential resource. Unit water usage for fiscal 2009 decreased by 6.3% from that of the previous year, due to increased recovery of production volume.

Target: Efficient use of water resources

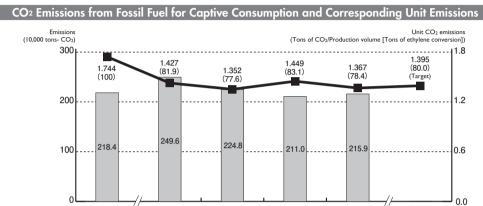
Since fiscal 2004, data for the Osaka Works include data for both the Gifu and Okayama Plants. Data for Water Emissions partially include that of the Group companies.

Numerical values in parentheses are index values (1990 = 100).

(FY)

'15

Reducing Greenhouse Gas Emissions


1. CO₂

CO₂ emissions for fiscal 2009 increased slightly by 0.3% from the preceding year to 4,364,000 tons due to production stoppage and adjustment at major plants. This represents an 18.4% increase compared with fiscal 1990.

Unit CO₂ emissions from fossil fuel for captive consumption for fiscal 2009 decreased by 5.7% compared to the previous year. This represents a 21.6% decrease from fiscal 1990.

Target:

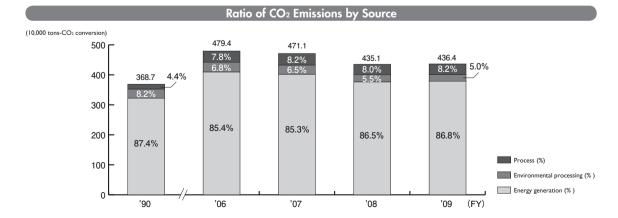
Achieve a 20% reduction relative to fiscal 1990 in unit CO₂ emissions originating from fossil fuels consumed in-house by fiscal 2015

'07

'08

'09

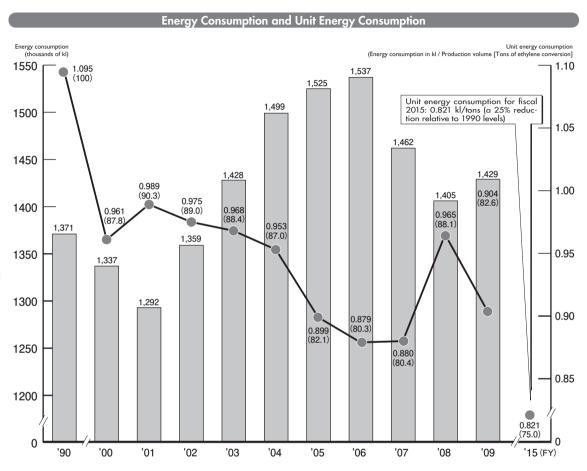
'06


Numerical values in parentheses are index values (1990 = 100).

'90

2. Greenhouse Gases (all six gases)

(10,000 tons- CO ₂ conversion)								
	FY 2006	FY 2007	FY 2008	FY 2009				
CO ₂	479.4	471.1	435.1	436.4				
Methane	0.01	0.01	0.01	0.01				
Nitrous oxide (N₂O)	6.4	5.8	5.3	4.6				
Hydrofluorocarbon (HFC)	<0.01	0.02	0.02	0.04				
Perfluorocarbon (PFC)	0	0	0	0				
Sulfur hexafluoride	0	0	0	0				
Total	485.8	476.9	440.4	441.1				


Emissions of Greenhouse Gases (all six gases)

Energy Conservation

In fiscal 2009, energy consumption by volume increased by 1.7% from the previous fiscal year to 1,429,000 kl (crude oil equivalent), affected by production suspension and adjustment at major plants. Meanwhile, unit energy consumption decreased by 6.3% from fiscal 2008, 17.4% lower than the fiscal 1990 level.

Target: Improve unit energy consumption for fiscal 2015 by 25% over fiscal 1990

Figures for fiscal 1990 (base year) and those for fiscal 2004 to 2009, and 2015 include data for both the Gifu and Okayama Plants of the Osaka Works.

Response to the Pollutant Release and Transfer Register (PRTR)

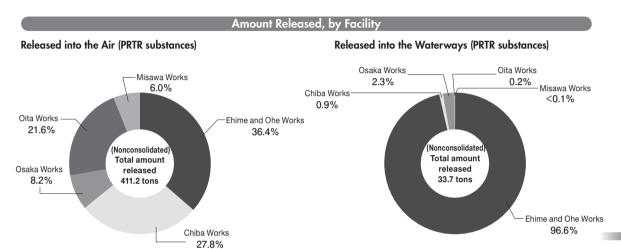
Based on the results of risk assessments and release evaluations, Sumitomo Chemical has set for itself a new target for reducing release volumes (into the air and water) of PRTR substances by 50%, relative to fiscal 2002 levels by fiscal 2010 and is currently implementing a variety of systematic measures to that end. In fiscal 2009, the Company released a total of 445.0 tons of such substances, a decrease of 19.4% from the previous fiscal year.

Release and Transfer of PRTR Substances in Fiscal 2009

Unit: Tons (Dioxins are measured in mg-TEQ.)

	PRTR	JCIA			Am	ount Releas	ed		Amo	ount Transfe	erred
No.		Substances	Name of Chemical Compound	Air	Water	Soil	Landfill	Total	Sewage	Waste	Total
1	0	0	Zinc compounds (water-soluble)	0.0	0.7	0.0	0.0	0.7	0.0	131.7	131.7
2	0	0	Acrylic acid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0	0	Methyl acrylate	2.9	0.0	0.0	0.0	2.9	0.0	1.1	1.1
4	0	0	Acrylonitrile	3.7	0.1	0.0	0.0	3.8	0.0	0.0	0.0
5	0	0	Acrolein	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6		0	Adipic acid	0.7	5.2	0.0	0.0	5.9	0.0	0.0	0.0
7	0	0	Acetaldehyde	0.3	<0.1	0.0	0.0	0.3	0.0	0.0	0.0
8	0	0	Acetonitrile	4.8	0.0	0.0	0.0	4.8	0.0	76.8	76.8
9	_	0	Acetone	42.1	7.1	0.0	0.0	49.2	0.0	156.8	156.8
10	0	0	2,2'-Azobisisobutyronitrile	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0	0	o-Anisidine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0	0	Aniline	0.7	0.0	0.0	0.0	0.7	0.0	120.7	120.7
13	0	0	2-Aminoethanol	0.0	0.1	0.0	0.0	0.1	0.0	17.7	17.7
14	0	0	m-Aminophenol	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0	0	Allyl alcohol	0.0	0.0	0.0	0.0	0.0	0.0	4.8	4.8
16	0	0	Antimony and its compounds	0.0	0.0	0.0	0.0	0.0	0.0	4.2	4.2
17		0	Ammonia	4.0	0.2	0.0	0.0	4.2	0.0	<0.1	<0.1
18		0	Aluminum compounds (water-soluble)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	0	0	Isoprene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0	0	0-Ethyl=0-(6-nitro-m-tolyl)=sec-butylphosphoramidothioate (also known as butamifos)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21		0	2-Ethyl-1-hexanol	<0.1	0.0	0.0	0.0	<0.1	0.0	490.5	490.5
22	0	0	Ethylbenzene	9.0	0.1	0.0	0.0	9.1	0.0	5.7	5.7
23	0	0	Ethylene oxide	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	0	0	Ethylene glycol	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
25	0	0	Ethylenediaminetetraacetic acid	0.0	<0.1	0.0	0.0	<0.1	0.0	0.0	0.0
26	0	0	Epichlorohydrin	5.9	4.3	0.0	0.0	10.2	0.0	0.0	0.0
27	0	0	1,2-Epoxypropane (also known as propylene oxide)	5.6	<0.1	0.0	0.0	5.6	0.0	0.0	0.0
28		0	Ammonium chloride	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29		0	Hydrogen chloride (excluding hydrochloric acid)	8.0	0.0	0.0	0.0	0.8	0.0	0.2	0.2
30		0	Chlorine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31	0	0	ε-Caprolactam	0.4	24.6	0.0	0.0	25.0	0.0	4.1	4.1
32		0	Formic acid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33	0	0	Xylene	15.1	0.1	0.0	0.0	15.2	0.1	8.5	8.6
34		0	Cumene (also known as isopropylbenzene)	109.4	0.1	0.0	0.0	109.5	0.0	0.0	0.0
35	0	0	Cresol (o-, m-, p-)	0.2	0.0	0.0	0.0	0.2	0.0	0.0	0.0
36		0	Chlorosulphonic acid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	0	0	Chloroacetyl chloride	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	0	0	Chloroethane	10.7	0.0	0.0	0.0	10.7	0.0	0.0	0.0
39	0	0	3-Chloropropene (also known as allyl chloride)	6.8	0.0	0.0	0.0	6.8	0.0	0.0	0.0
40	0	0	Chlorobenzene	5.1	<0.1	0.0	0.0	5.1	0.0	95.5	95.5
41	0	0	Chloroform	0.3	0.0	0.0	0.0	0.3	0.0	1.5	1.5
42	0	0	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4
43		0	Ethyl acetate	8.0	<0.1	0.0	0.0	8.0	0.0	47.5	47.5
44	0	0	Vinyl acetate	74.6	<0.1	0.0	0.0	74.6	0.0	180.0	180.0
45	0	0	Salicyl aldehyde	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	0	0	a-Cyano-3-phenoxybenzyl=3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate (also known as cypermethrin)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47	0	0	Inorganic cyanide compounds (excluding complex salts and cyanates)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48		0	Diethanolamine	0.0	0.4	0.0	0.0	0.4	0.0	1.6	1.6
49	0	0	1,4-Dioxane	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.7
50		Ö	Cyclohexanol	9.7	<0.1	0.0	0.0	9.7	0.0	49.1	49.1
51		Ö	Cyclohexane	94.0	0.0	0.0	0.0	94.0	0.0	0.0	0.0
52	0	Ö	Cyclohexylamine	0.0	<0.1	0.0	0.0	<0.1	0.0	6.4	6.4
53	Ö	0	1,2-Dichloroethane	7.2	0.0	0.0	0.0	7.2	0.0	168.3	168.3
54	0	0	1,2-Dichloropropane	0.0	0.2	0.0	0.0	0.2	0.0	127.3	127.3
55	Ö	Ö	1,3-Dichloropropene (also known as D-D)	0.7	0.0	0.0	0.0	0.7	0.0	82.7	82.7
56	0	0	o-Dichlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	75.2	75.2
57	0	0	Dichloropentafluoropropane (also known as HCFC-225)	26.3	0.0	0.0	0.0	26.3	0.0	0.0	0.0
58	0	0	Dichloromethane (also known as methylene chloride)	14.1	0.0	0.0	0.0	14.1	0.0	173.6	173.6
59	0	0	2,4-Dinitrophenol	0.0	0.0	0.0	0.0	0.0	0.0	48.5	48.5
60	0	0	Diphenylamine Diphenylamine	0.0	0.0	0.0	0.0	0.0	0.0	7.2	7.2
		0	2,6-Di-t-butyl-4-methylphenol (also known as BHT)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61			=,1 =								
61			Dimethylamine	0.0	25.1	0.0	()()	25.1	0.0	0.0	0.0
61 62 63	0	0	Dimethylamine N,N-Dimethylformamide	0.0	25.1	0.0	0.0	25.1	0.0	0.0	0.0

Release and Transfer of PRTR Substances in Fiscal 2009


No	PRTR	JCIA	Name of Chamical Company		Amount Relea		sed		Amo	ount Transfe	rred
		Substances		Air	Water	Soil	Landfill	Total	Sewage	Waste	Total
65		0	Oxalic acid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66		0	Bromine	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
67		0	Nitric acid	3.7	0.0	0.0	0.0	3.7	0.0	5.1	5.1
68	0	0	Styrene	3.3	0.0	0.0	0.0	3.3	0.0	0.0	0.0
69	0	0	Dioxins	17.2	9.6	0.0	0.0	26.8	<0.1	73.7	73.7
70	0	0	Thiourea	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.8
71	0	0	0-4-Cyanophenyl-0,0-dimethyl phosphorothioate (also known as cyanophos or CYAP)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
72	0	0	0,0-Dimethyl-0-(3-methyl-4-nitrophenyl)phosphorothioate (also known as fenitrothion or MEP)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
73	0	0	1,3,5,7-Tetraazatricyclo[3.3.1.1(3,7)]decane (also known as hexamethylenetetramine)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
74		0	Tetrahydrofuran	11.5	0.1	0.0	0.0	11.6	0.0	151.3	151.3
75	0	0	Terephthalic acid	0.0	0.0	0.0	0.0	0.0	0.0	336.7	336.7
76		0	Triethanolamine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
77		0	Triethylamine	9.8	4.3	0.0	0.0	14.1	0.1	38.0	38.1
78	0	0	2,4,6-Trichloro-1,3,5-triazine (also known as cyanuric chloride)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
79	0	0	Trichlorofluoromethane (also known as CFC-11)	4.3	0.0	0.0	0.0	4.3	0.0	0.0	0.0
80		0	Trimethylamine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
81	0	0	1,3,5-Trimethylbenzene	0.1	0.0	0.0	0.0	0.1	0.0	0.2	0.2
82	0	0	o-Toluidine	0.0	0.0	0.0	0.0	0.0	0.0	4.4	4.4
83	0	0	p-Toluidine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
84	0	0	Toluene	152.7	0.6	0.0	0.0	153.3	<0.1	1564.0	
85	0	0	Nickel compounds	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
86	0	0	N-Nitrosodiphenylamine	0.0	0.0	0.0	0.0	0.0	0.0	21.6	21.6
87	0	0	p-Nitrophenol	0.0	0.0	0.0	0.0	0.0	0.0	3.1	3.1
88	0	0	Nitrobenzene	0.6	0.5	0.0	0.0	1.1	0.0	56.6	56.6
89	0	0	Hydrazine	<0.1	0.2	0.0	0.0	0.2	0.0	2.7	2.7
90	0	0	Hydroquinone	0.0	0.0	0.0	0.0	0.0	0.0	<0.1	<0.1
91	0	0	Pyridine	2.5	1.0	0.0	0.0	3.5	0.0	5.9	5.9
92	0	0	m-Phenylenediamine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
93	0	0	Phenol	0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.8
94	0	0	3-Phenoxybenzyl=3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
95	0	0	(also known as permethrin) 1,3-Butadiene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
96		0	Diisobutyl phthalate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
97	0	Ö	Di-n-butyl phthalate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
98	0	0	Bis (2-ethylhexyl)phthalate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
99		0	Butyl alcohol	0.2	0.0	0.0	0.0	0.2	0.0	0.0	0.0
100		0	Butyraldehyde	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
101		0	Propyl alcohol	1.5	<0.1	0.0	0.0	1.5	0.0	123.3	123.3
102	0	0	2-Bromopropane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
103		0	n-Hexane	1242.4	0.3	0.0		1242.7	<0.1	516.0	516.0
104	0	0	Benzyl chloride	<0.1	0.0	0.0	0.0	<0.1	0.0	0.0	0.0
105	0	0	Benzaldehyde	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
106	0	0	Benzene	12.5	0.9	0.0	0.0	13.4	0.0	0.0	0.0
107		0	Pentaerythritol	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
108	0	0	Boron and its compounds	0.0	<0.1	0.0	0.0	<0.1	0.0	2.8	2.8
109	0	0	Phosgene Phosgene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
110	0	0	Polyoxyethylene alkyl ether (alkyl C= 12-15) and its mixture	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
111	0	0	Formaldehyde	0.0	<0.1	0.0	0.0	0.0	1.3	0.0	1.3
112	0	0	Manganese and its compounds	0.0	0.1	0.0	0.0	0.2	0.0	14.2	14.2
113	0	0	Phthalic anhydride	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0.0
	0	0	Pritrailic anhydride Maleic anhydride	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
114	0	0	2,3-Epoxypropyl methacrylate	1.1	0.0	0.0	0.0	1.1	0.0	2.0	2.0
	0		Methyl methacrylate Methyl methacrylate	37.9	0.0	0.0	0.0				
116 117		0	Methanethiol	0.0	0.0	0.0	0.0	37.9 0.0	0.0	78.0 0.0	78.0 0.0
117	0	0	(Z)-2'-Methylacetophenone=4,6-dimethyl-2-pyrimidinylhydrazone (also known as ferimzone)	0.0	<0.1	0.0	0.0	<0.1	0.0	0.0	0.0
119		0	(2)-2 - wiennylacetopherione=4,o-aimeinyr-2-pyrimiannylnydrazone (also known as rerimzone) Methylamine	0.0	0.0	0.0	0.0	0.2	0.0	6.1	6.1
		0	Methyl alcohol	346.0	0.0	0.0	0.0	346.7	0.0	947.3	947.3
120			Methylethylketone	0.4				0.4		3.0	3.0
121		0	· ·		0.0	0.0	0.0		0.0		
122		0	N-Methylpytrolidone Methylbytylketene	<0.1	0.0	0.0	0.0	<0.1	0.0	114.1	114.1
123		0	Methylbutylketone	89.1	1.0	0.0	0.0	90.1		1966.7	
124		0	Sulfuric acid Diathyl gulfete	1.9	0.6	0.0	0.0	2.5	0.0	30.8	30.8
125		0	Diethyl sulfate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
126		0	Dimethyl sulfate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
127		0	Phosphorus and its compounds	0.1	24.1	0.0	0.0	24.2	0.0	0.0	0.0
			Total substances used by Sumitomo Chemical: 127 (FY 2009)	2386.6	102.9	0.0	0.0	2489.5	2.1	8280.0	Ì

The PRTR Act uses kilograms (rounded off to two significant figures) to express weight, but in this report numerical values are expressed in tons rounded off to one decimal place (except for dioxins, expressed in mg-TEQ).

Release and Transfer of PRTR Substances in Fiscal 2009

	Released			Transferred			
	Air	Water	Subtotal	Sewage	Waste	Subtotal	
PRTR substances	Nonconsolidated (86 substances)	411.2	33.7	444.9	2.1	3632.6	3634.7
Phin substances	Group	1257.6	67.6	1325.2	5.3	7296.6	7031.9
JCIA substances	Nonconsolidated (127 substances)	2386.6	102.9	2489.5	2.1	8280.0	8282.1

Figures for the release and transfer of PRTR substances for the Group for fiscal 2009 reflect totals for Sumitomo Chemical and its 16 domestic Group companies.

Initiatives to Reduce Emissions of Volatile Organic Compounds

Under the Air Pollution Control Law, volatile organic compounds (VOC) have become subject to strict regulation since 2004. Sumitomo Chemical has established stricter targets than those under the Law to reduce VOC emissions by 30% relative to fiscal 2000 levels by fiscal 2010. Currently, Sumitomo Chemical is working to put an emissions reduction plan into action as part of its efforts to comply with the PRTR Law. In fiscal 2009, VOC emissions decreased by 16.0% compared to the previous year to 3,344 tons as a result of specific measures to reduce VOC emissions. This represents a 14.9% reduction from the fiscal 2000 level.

Prevention of Ozone Layer Damage

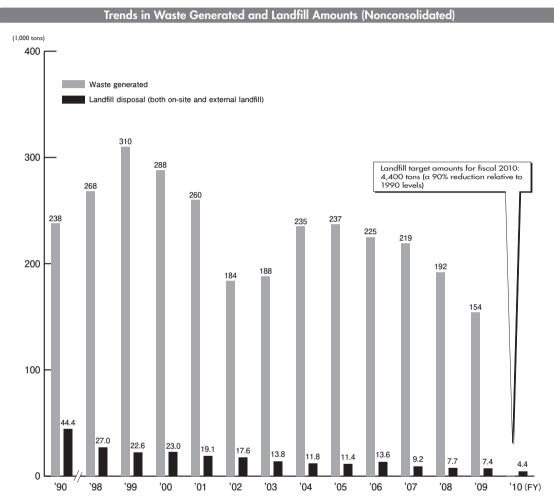
Sumitomo Chemical maintains strict control of cooling devices that employ specified CFCs (designated in the Law Concerning the Protection of the Ozone Layer Through the Control of Specified Substances and Other Measures) that are highly damaging to the ozone layer. The Company is committed to ensuring that specified CFCs are not accidentally released into the atmosphere from devices containing them, and carries out proper recovery, transportation and destruction of specified CFCs contained in refrigeration units upon disposal.

Target:

Eliminate the use of refrigeration units that use specified CFCs (CFC11, CFC12, CFC113, CFC114, CFC115) as coolants by 2025

Number of Refrigeration Units that Use Specified CFCs as coolants as of the End of Fiscal 2009 (Nonconsolidated & Group)

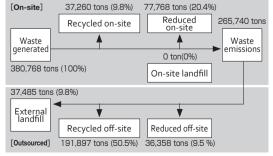
	Nonconsolidated	Group		
Туре	Number of units			
CFC11	19	22		
CFC12	16	51		
CFC113	0	0		
CFC114	0	0		
CFC115	0	7		
Total	25	80		


Group data reflect totals for Sumitomo Chemical and its 16 domestic Group companies.

Industrial Waste Reduction

In fiscal 2009, landfill disposal decreased by 3.9% from the previous year to 7,400 tons, due to the promotion of recycling of incinerator ash sludge.

Target:


Reduce landfill disposal by 90% relative to fiscal 1990 levels in fiscal 2010.

Figures for fiscal 1990 (base year) and those for fiscal 2004 to 2010 include data for both the Gifu and Okayama Plants of the Osaka Works.

Waste Disposal Flow Chart and Results (FY 2009; Nonconsolidated) [On-site] 31,529 tons (20.5%) 55,576 tons (36.2%) Reduced 66,623 tons Recycled on-site on-site Waste generated emissions 0 ton(0%) 153,727 tons (100%) On-site landfill 7,427 tons (4.8%) Externa landfill Recycled off-site Reduced off-site 38,268 tons (24.9%) 20,927 tons (13.6%) [Outsourced]

Waste Disposal Flow Chart and Results (FY 2009; Group)

Recycled waste: Total amount of waste that was reused, recycled, or thermally recycled.

Recycled waste: Total amount of waste reduced through incineration, etc. Group data reflects totals for Sumitomo Chemical and its 16 domestic Group companies.

PCB Recovery, Storage and Treatment

In accordance with the Law concerning Special Measures for Promotion of Proper Treatment of PCB Waste, Sumitomo Chemical recovers polychlorinated biphenyls (PCB) waste (capacitors, transformers and other electronic devices that contain PCB insulating oil). The Company then stores this industrial waste, which is subject to special control, in specified areas within the Company's waste storage facilities, subsequently ensuring strict control of this waste. Sumitomo Chemical plans to treat all PCB waste by March 2014, ahead of the deadline specified under the Law.

Target:

Recover and store PCB waste in an appropriate manner and complete treatment of this waste by March 2014

PCB Waste Storage and Control as of the End of Fiscal 2009 (Nonconsolidated & Group)

	Number of units of PCB waste	Volume of PCB (m)
Noncon- solidated	653 (625 stored /28 in use)	36.1
Group	1,341 (1,020 stored /321 in use)	40.7

Low-level PCB waste is not included.

Group data reflects totals for Sumitomo Chemical and its 16 domestic Group companies.

Handling of ballasts of fluorescent lamps and mercury lamps was:

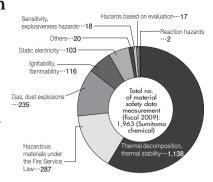
- excluded from the data (Sumitomo Chemical Co. Ltd.)

4 | Environmental Preservation in Logistics Operations

Initiatives for Energy Conservation and CO₂ Emissions Reduction in Logistics Operations

As a result of our efforts to bring about more efficient transport, we achieved a 0.2% improvement in unit energy consumption for fiscal 2009 over the previous year.

Trends in CO₂ Emissions from Logistics Operations


(FY)	2006	2007	2008	2009
Energy consumed (thousand kl-crude oil)	40.3	39.7	34.7	32.8
Unit energy consumption (kl/ton)	0.0114	0.0111	0.0105	0.0105
CO ₂ emissions (thousand tons)	105.5	104.9	91.7	86.7

⁻ excluded from the data, except for some Group companies (Group)

Process Safety and Disaster Prevention

Results of Material Safety Data Measurement

The Safety Engineering Laboratory at the Process & Production Technology Center (Ehime) studies and assesses process safety, researches safety measures, measures and evaluates material safety data, compiles a database on safety technologies, and undertakes training for safety engineers in its efforts to enhance process safety management and to prevent accidents such as fires and explosions. A total of 1,935 material safety data measurements were taken in fiscal 2009 (2,592 measurements in fiscal 2008), 59% of which measured thermal decomposition and thermal stability.

Safety Information Database

A safety information database has been created by collecting information on accidents in Japan and overseas and preparing abstracts of such accidents. As of the end of March 2010, 32,023 sets of data were stored in the database (30,510 sets of data as of March 31, 2009). This system allows all employees at each Works or Research Laboratory to search stored abstracts, and abstracts and their original data can be viewed or printed at individual

· Accident prevention technology information: 13,622 items

- Accident cause investigations:
- 1 932 items
- Accident information: 16.469 items

(as of March 31, 2010)

(# of sessions)

(# of items)

43

terminals. These data are also used in process hazard evaluations and case study examinations to prevent similar accidents. In addition, accident data and other data are disclosed to Group companies, as necessary.

Process Safety Review Committee

The Process Safety Review Committee convenes at every stage of the R&D and commercialization processes to oversee a system in which safety at each stage is thoroughly verified before moving on to the next stage. This system is governed by the in-house Process Development and Commercialization Regulations and Safety Management Guidelines, and it ensures that work is conducted with clearly defined research & development supervision. The Company notifies all Group companies of its operations. During fiscal 2009, a total of 229 sessions were convened as part of this system. Through these meetings, the Company is making continuous efforts to identify any possible process risks that may arise.

Process Safety Review Committee Conventions

Responsible Care Audit Results

	Level 1	Level 2	Level 3	Level 4	Level 5	Total
FY 2008	39	22	45	81	25	212
FY 2009	38	27	57	84	23	229

Responsible Care Audits

Audits Conducted

In fiscal 2009, a total of 43 specialized and management audits were conducted.

· · · · · · · · · · · · · · · · · · ·											
	Facilities		2001	2002	2003	2004	2005	2006	2007	2008	2009
	Works	4	5	4	5	4	7	4	5	4	11
	Research Laboratories	2	1	0	1	1	0	1	1	0	1
Specialized Audits	Logistics Centers	0	0	1	0	0	1	0	0	1	0
Specialized Addits	Business Sectors	4	4	7	5	6	5	5	6	5	5
	Group Companies (Japan)	22	16	9	8	12	10	12	14	16	16
	Group Companies (Overseas)	_	2	1	2	3	1	4	4	4	3
Management Audits	Works and Research Laboratories	6	6	5	6	6	5	6	6	5	7

The fiscal 2009 Sumitomo Chemical specialized audits resulted in a total of 225 items meriting comment. Audit items will be expanded and enhanced on an annual basis to ensure continual improvement.

Fiscal 2009 Specialized Audits for Facilities and Business Sectors (# of audits)

Target	Facilities (Works, Research Laboratories) Logistics Centers	Business Sectors (Head Office Business Sectors)	Total
Good (Important)	15	2	17
Needs Improvement	88	22	110
Needs to be Examined	78	20	98
Total	181	44	225

7 | Unification of Group Environmental Preservation Targets

Group Companies in Japan

Group-wide quantitative domestic targets have been established, and specific measures to achieve these targets are being implemented at all Group companies in Japan to reduce primary environmental impact systematically by fiscal 2010. These cover unit energy consumption, unit CO₂ emissions, release of PRTR substances (into the air and water) and amounts of landfill disposal.

1. Improvement in unit energy consumption

Target:

Reduce unit energy consumption by 9.5% relative to fiscal 2002 levels by fiscal 2010

Results:

Unit energy consumption in fiscal 2009 was reduced by 5.2% relative to fiscal 2002 levels.

2. Improvement in unit CO2 emissions

Target:

Reduce unit CO₂ emissions by 6.0% relative to fiscal 2002 levels by fiscal 2010

Results:

Unit CO₂ emissions in fiscal 2009 were reduced by 3.1% relative to fiscal 2002 levels.

3. Reduction of volume of PRTR substances released

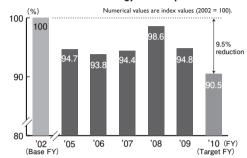
Target:

Reduce the total volume of PRTR substances released (into the air and water) by 60% relative to fiscal 2002 levels by fiscal 2010

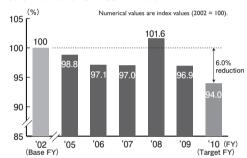
Results:

Total volume of PRTR substances released in fiscal 2009 was reduced by 49.1% relative to fiscal 2002 levels.

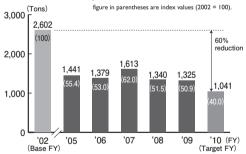
4. Reduction of landfill disposal amount

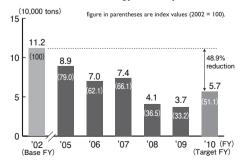

Target:

Reduce landfill disposal amount by 48.9% relative to fiscal 2002 levels by fiscal 2010


Results:

Landfill disposal amount in fiscal 2009 was reduced by 66.8% relative to fiscal 2002 levels.


Indicator Trends for Unit Energy Consumption


Indicator Trends for Unit CO2 Emissions

Trends for Volume of PRTR Substances Released (into the Air and Water)

Indicator Trends for Unit Energy Consumption

Values for individual target items (fiscal 2010) set by Sumitomo Chemical and its 16 domestic Group companies are cumulative. Figures for past fiscal years have been revised due to improved accuracy of data.

Individual Group Company Targets

Individual company targets that form the basis of the unified Group targets (determined specific target values) for the major areas of environmental preservation management are listed below.

Energy Conservation and Global Warming Initiatives

Company	Target Details				
Asahi Chemical Co., Ltd.	Reduce energy consumption by 10% relative to fiscal 1990 by fiscal 2010				
Sumika-Kakoushi Co., Ltd.	Reduce unit energy consumption by 1% annually				
Koei Chemical Co., Ltd.	Reduce unit energy consumption by 1% annually				
The survey Co. Had	Reduce energy consumption by 10% relative to fiscal 2002 by fiscal 2010				
Thermo Co., Ltd.	• Reduce unit CO2 emissions by 10% relative to fiscal 2003 by fiscal 2010				
SanTerra Co., Ltd.	Control fiscal 2010 unit energy consumption to within an 8% increase relative to fiscal 2008 levels				
Shinto Paint Co., Ltd.	Reduce unit energy consumption by 1% annually				
Sumika Color Co., Ltd.	• Reduce unit energy consumption by 20% relative to fiscal 1990 by fiscal 2010				
Sumitomo Joint	Reduce unit energy consumption of private thermal generation by 10% relative to fiscal 2002 by fiscal 2010				
Electric Power Co., Ltd.	• Reduce unit CO ₂ emissions from transmission end of thermal power stations by at least 10% relative to fiscal 1990 by fiscal 2010				
Daining of Compile	Reduce unit energy consumption by 1% annually				
Dainippon Sumitomo Pharma Co., Ltd.	• Reduce CO ₂ emissions to below fiscal 1990 levels by fiscal 2010				
Thatma Gol, Etal	Reduce unit CO ₂ emissions by 1% annually				
	Reduce unit energy consumption by 1% annually				
Sumitomo Dow Ltd.	• Reduce unit CO ₂ emissions from fossil fuel for captive consumption by 1% annually				
Curalita Davian	Reduce unit energy consumption by 1% annually				
Sumika Bayer Urethane Co., Ltd.	• Reduce unit CO ₂ emissions from fossil fuel for captive consumption by 10% relative to fiscal 1990 by fiscal 2010				
	Reduce unit energy consumption by 1% annually				
Taoka Chemical Co., Ltd.	• Reduce unit CO ₂ emissions from fossil fuel for captive consumption by 3% relative to fiscal 1990 by fiscal 2010				
	• Reduce unit energy consumption by 20% relative to fiscal 1990 by fiscal 2010				
Nippon A&L Inc.	• Reduce unit CO ₂ emissions from chemical fuel for captive consumption by 25% relative to fiscal 1990 by fiscal 2015				
Nihon Medi-Physics Co., Ltd.	Reduce energy consumption by 1% annually				
	Reduce unit energy consumption by 1% annually				
Nihon Oxirane Co., Ltd.	• Reduce unit CO ₂ emissions from fossil fuel for captive consumption by 10% relative to fiscal 1990 by fiscal 2010				
Considerate Chapital Control	• Reduce unit energy consumption by 25% relative to fiscal 1990 by fiscal 2015				
Sumitomo Chemical Co., Ltd.	• Reduce unit CO ₂ emissions from fossil fuel for captive consumption by 20% relative to fiscal 1990 by fiscal 2015				

PRTR Initiatives

Company	Target Details
Asahi Chemical Co., Ltd.	• Reduce amount released (into the air and water) to below fiscal 2001 levels by fiscal 2010
Sumika-Kakoushi Co., Ltd.	• Reduce amount released (into the air and water) by 70% relative to fiscal 2002 by fiscal 2010
Koei Chemical Co., Ltd.	Control increase of amount released to correspond to production levels
Thermo Co., Ltd.	Maintain zero release (into the air and water)
SanTerra Co., Ltd.	Maintain zero release (into the air and water)
Shinto Paint Co., Ltd.	• Reduce amount released (into the air and water) by 50% relative to fiscal 2001 in fiscal 2008
Sumika Color Co., Ltd.	• Reduce amount released (into the air and water) by 15% relative to fiscal 2003 by fiscal 2010
Sumitomo Joint Electric Power Co., Ltd.	Maintain zero release (into the air and water)
Dainippon Sumitomo Pharma Co., Ltd.	• Reduce total amount of dichloromethane, chloroform, and 1,2-dichloroethane released into the air by 20% relative to fiscal 2003 by fiscal 2010
Sumitomo Dow Ltd.	• Reduce amount released (into the air and water) by 50% relative to fiscal 2003 by fiscal 2010
Sumika Bayer Urethane Co., Ltd.	• Reduce amount released (into the air and water) by 60% relative to fiscal 2002 by fiscal 2010
Taoka Chemical Co., Ltd.	• Reduce amount released (into the air and water) to below fiscal 2002 levels by fiscal 2010
Nippon A&L Inc.	• Reduce amount released (into the air and water) by 60% relative to fiscal 2002 by fiscal 2010
Nihon Medi-Physics Co., Ltd.	Maintain zero release (into the air and water)
Nihon Oxirane Co., Ltd.	Reduce amount of molybdenum released into the water to 10 tons by fiscal 2010
Sumitomo Chemical Co., Ltd.	• Reduce amount released (into the air and water) by 50% relative to fiscal 2002 by fiscal 2010

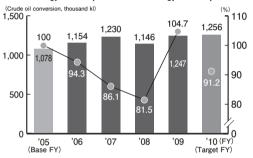
Landfill Disposal Reduction Initiatives

Company	Target Details
Asahi Chemical Co., Ltd.	• Control landfill disposal within a 40% increase from fiscal 2006 by fiscal 2010
Sumika-Kakoushi Co., Ltd.	• Reduce landfill disposal by at least 99% relative to fiscal 2002 by fiscal 2010
Koei Chemical Co., Ltd.	Reduce landfill disposal by 20% relative to fiscal 2002 by fiscal 2010
Thermo Co., Ltd.	Reduce landfill disposal to below fiscal 2002 levels by fiscal 2010
SanTerra Co., Ltd.	Reduce landfill disposal to below fiscal 2003 levels by fiscal 2010
Shinto Paint Co., Ltd.	• Reduce landfill disposal (excluding sludge) by 2% relative to previous fiscal year
Sumika Color Co., Ltd.	Reduce landfill disposal by 20% relative to fiscal 1990 by fiscal 2010
Sumitomo Joint Electric Power Co., Ltd.	Achieve 70% utilization rate for coal ash by fiscal 2010
Dainippon Sumitomo Pharma Co., Ltd.	Reduce landfill disposal by at least 80% relative to fiscal 1990 in fiscal 2008
Sumitomo Dow Ltd.	Reduce landfill disposal to below fiscal 2003 levels by fiscal 2010
Sumika Bayer Urethane Co., Ltd.	Reduce landfill disposal by 85% relative to fiscal 1990 by fiscal 2010
Taoka Chemical Co., Ltd.	Reduce landfill disposal to below fiscal 2002 levels by fiscal 2010
Nippon A&L Inc.	• Reduce landfill disposal by 85% relative to fiscal 1990 by fiscal 2010
Nihon Medi-Physics Co., Ltd.	Reduce landfill disposal to 27 tons by fiscal 2010
Nihon Oxirane Co., Ltd.	Reduce landfill disposal by 90% relative to fiscal 1990 by fiscal 2010
Sumitomo Chemical Co., Ltd.	• Reduce landfill disposal by 90% relative to fiscal 1990 by fiscal 2010

Overseas Group Companies

For nine principal overseas Group companies, unified quantitative targets for fiscal 2010, corresponding to the indicators for the Group companies in Japan, have been established with regard to unit energy consumption, unit CO₂ emissions, unit water usage, and unit landfill disposal. The overseas Group companies have already started initiatives to achieve these targets.

1. Improvement in Unit Energy Consumption


Target:

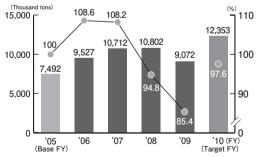
Reduce unit energy consumption by 8.8% relative to fiscal 2005 levels by fiscal 2010

Results:

Unit energy consumption in fiscal 2009 was increased by 4.7% relative to fiscal 2005 levels.

Trends in Energy Consumption and Unit Energy Consumption Indices

3. Reduction in Unit Water Usage


Target:

Reduce unit water usage by 2.4% relative to fiscal 2005 levels by fiscal 2010

Results:

Unit water usage in fiscal 2009 was reduced by 14.6% relative to fiscal 2005 levels.

Trends in Water Usage and Unit Water Usage Indices

These figures reflect the totals for the following nine overseas Group

Sumitomo Chemical Singapore Pte Ltd.,

Petrochemical Corporation of Singapore (Pte) Ltd.,

The Polyolefin Company (Singapore) Pte. Ltd., Sumipex (Thailand) Co., Ltd.,

Bara Chemical Co., Ltd.,

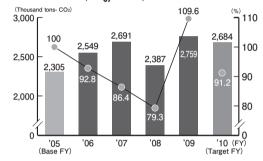
Dalian Sumika Chemphy Chemical Co., Ltd.,

SC Enviro Agro India Private Ltd.,

Sumika Technology Co., Ltd., Dongwoo Fine-Chem Co., Ltd

The significant increase in unit energy consumption and unit CO2 emissions during fiscal 2009 are attributable mainly to a decrease in sales resulting from a steep decline in material prices in our petrochemical products business (Petrochemical Corporation of Singapore).

2. Improvement in Unit CO₂ Emissions


Target:

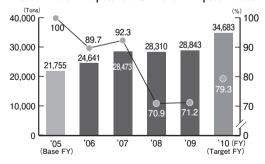
Reduce unit CO₂ emissions by 8.8% relative to fiscal 2005 levels by fiscal 2010

Results:

Unit CO2 emissions in fiscal 2009 was increased by 9.6 % relative to fiscal 2005 levels.

Trends in CO₂ Emissions (Energy Sources) and Unit CO₂ Emissions Indices

4. Reduction in Unit Landfill Disposal


Target:

Reduce unit landfill disposal by 20.7% relative to fiscal 2005 levels by fiscal 2010

Results:

Unit landfill disposal in fiscal 2009 was reduced by 28.8% relative to fiscal 2005 levels.

Trends in Landfill Disposal and Unit Landfill Disposal Indices

Others (topics)

Conclusion of Agreement on Environmental Preservation (Chiba Works)

In February 2010, the Chiba Works and other companies operating large-scale factories in the Tokyo Bay Area signed the Agreement on Environmental Preservation with Chiba Prefecture and six cities near the Chiba Works, which replaces the previous Agreement on Pollution Prevention.

In addition to efforts to prevent pollution, this new agreement aims at further strengthening efforts to preserve the earth's environment by enhancing activities, capabilities and organizations for environmental management, and disclosing more information to local residents living near the plants.

Strengthening Measures to Eliminate Odors (Oita Works)

The Oita Works has been working to eliminate odors generated in its plants, removing the source of odor once it has been identified. If such improvement measures proved inadequate, the source of the odor was completely sealed off. However, changes in the production mix have required the Oita Works to take additional measures.

During 2009, the Oita Works identified an amine compound as one of the sources of a complex odor and installed deodorization equipment using diluted sulfuric acid. To reduce the odor from wastewater treatment facilities, the settlement tanks were covered to prevent odor leakage. The Oita Works will maintain stable operation at these facilities while further reducing odor.

Sumitomo Chemical produces an "Environment, Health & Safety Report" at each of the Company's Works.

Please contact the relevant site for further details.

Sumitomo Chemical Co., Ltd. Ehime Works General Affairs Department

5-1, Sobiraki-cho, Niihama City, Ehime Prefecture 792-8521 Tel: +81-897-37-1711 Fax: +81-897-37-4161

Sumitomo Chemical Co., Ltd. Chiba Works General Affairs Department

Anesaki-Kaigan, Ichihara City, Chiba Prefecture 299-0195 Tel: +81-436-61-1313 Fax: +81-436-61-2229

Sumitomo Chemical Co., Ltd. Osaka Works General Affairs Department (Kasugade)

1-98, Kasugade-Naka 3-chome, Konohana-ku, Osaka City 554-8558 Tel: +81-6-6466-5022 Fax: +81-6-6466-5460

Sumitomo Chemical Co., Ltd. Ohe Works General Affairs Department

1-1, Oe-cho, Niihama City, Ehime Prefecture 792-0015 Tel: +81-897-37-1800 Fax: +81-897-37-1158

Sumitomo Chemical Co., Ltd. Oita Works General Affairs Department

2200, Oaza-Tsurusaki, Oita City, Oita Prefecture 870-0106 Tel: +81-97-523-1111 Fax: +81-97-523-1121

Sumitomo Chemical Co., Ltd. Misawa Works General Affairs Department

Aza-Sabishirotai, Oaza-Misawa, Misawa City, Aomori Prefecture 033-0022 Tel: +81-176-54-2111 Fax: +81-176-54-2163

For information concerning the Utajima Pilot Production Department, Gifu Plant, and Okayama Plant of the Osaka Works, please contact the Osaka Works (Kasugade). The Ohe Works, a manufacturing site for IT electronic parts and materials, became independent from the Ehime Works in April 2009. The Works is planning to publish its own Environmental and Safety Report from 2010.

