

1 Management Systems (Non-Consolidated)

■ Environmental Management System (ISO14001)

Acquisition of ISO14001 Certification by Sumitomo Chemical's Works

Works and Certificate Number	ISO14001:1996 Certification Date	ISO14001:2004 Certification Date
Ehime Works (including Ohe Works) [JCQA-E-018]	April 1998	April 2006
Chiba Works [KHK-97ER-04]	June 1997	March 2006
Osaka Works (Kasugade) [JQA-E-90072]	November 1997	January 2006
Osaka Works (Gifu Plant) [JCQA-E-0206]	December 2000	December 2005
Osaka Works (Okayama Plant) [JCQA-E-0218]	January 2001	February 2006
Oita Works [JQA-E-90152]	March 1998	April 2006
Misawa Works [JQA-EM0355]	March 1999	February 2006

ISO14001:1996 certification was obtained at all Works between 1997 and 1999. From 2005 to 2006, these Works took steps to undergo transitional inspections and obtained certification for ISO14001:2004, the revised version of ISO14001:1996.

Quality Management System (ISO9001)

Acquisition of ISO9000 Series Certification by Sumitomo Chemical's Works

Works and Certificate Number	ISO9002:1994 Certification Date	ISO9001:2008 Certification Date
Ehime Works [JCQA-0019] [YKA-4004422/J]	October 1994 —	October 2009 August 2009
Chiba Works [JQA-0829]	March 1995	April 2010
Osaka Works (Kasugade) [JQA-0721]	December 1994	December 2009
Osaka Works (Okayama Plant) [JQA-1650]	March 1997	April 2010
Oita Works [JQA-1069]	December 1995	January 2010
Misawa Works [JQA-0752]	December 1994	December 2009
Ohe Works [JCQA-0320] [JCQA-1720]	April 1998 —	April 2010 January 2010

Certification of compliance with ISO9002:1994 was completed for all Works except the Osaka Works (Gifu Plant)* between 1994 and 1998. Sumitomo Chemical made the transition to compliance with ISO9001:2008 in 2009-2010. The Ohe Works registered for ISO9001:2008 in 2010.

*The Osaka Works (Gifu Plant) has been pursuing Good Manufacturing Practice (GMP) management as have other Works, including the Osaka Works (Kasugade and Okayama Plants), the Oita Works and the Misawa Works.

Occupational Safety and Health Management System (OSHMS)

Acquisition of OSHMS Certification for Sumitomo Chemical's Works and Research Laboratories

Facilities	Certificate Number	Certification Date
Ehime Works	04-38-1	September 2004
Chiba Works	03-12-1	May 2003
Osaka Works (Kasugade)	05-27-3	February 2005
Osaka Works (Utajima area)	09-27-14	January 2009
Osaka Works (Gifu Plant)	09-21-6	February 2009
Osaka Works (Okayama Plant)	09-33-7	February 2009
Oita Works	06-44-1	July 2006
Ohe Works	10-38-4	March 2010
Agricultural Chemicals Research Laboratory*1	07-28-9	January 2007
Tsukuba Research Laboratory*2	05-8-3	December 2005

By fiscal 2009, Sumitomo Chemical acquired OSHMS certification from the Japan Industrial Safety and Health Association (JISHA) at five of its Works and two of its Research Laboratories.

- * 1 Agricultural Chemicals Research Laboratory is presently named Health & Crop Sciences Research Laboratory.
- * 2 Tsukuba Research Laboratory was reorganized into the Tsukuba Material Development Laboratory and the Advanced Materials Research Laboratory.

Voluntary Safety Management of High Pressure Gas based on Certification by the Minister

Number of Accreditations of Completion and Safety Inspection Given for Sumitomo Chemical Facilities

Works	Area	Year of certification	Year and month renewed	Number of facilities given accreditation
Ehime Works	Niihama	2002	March 2013	13
	Kikumoto	2002	March 2013	4
Chiba Works	Anesaki	1987	May 2009	11
	Sodegaura	1987	May 2009	17

To achieve safe operations, Sumitomo Chemical has obtained Accreditation of Completion and Safety Inspection as stipulated in the High Pressure Gas Safety Act for our 45 facilities. Certification for the Chiba Works, which has been certified since 1987, was renewed in May 2009. The Ehime Works which has been certified since 2002, was also renewed in March 2013. The plants of both Works have been continuing stable operations. Ministerial certification is given to plants which have achieved excellent safety and management levels and meet legal requirements. Such plants are allowed to conduct their safety inspections on a voluntary basis. In order to obtain ministerial certification, prior review is made by a special team including academic experts on the accuracy of daily safety inspection data and the safety management system. Every time, Sumitomo Chemical has been given high marks at the review for renewal of the certification.

2 Occupational Health and Safety-Industrial Safety and Disaster Prevention (Non-Consolidated and Group Companies in Japan)

Criteria and Results of the President's Safety Award for Zero-Accident and Zero-Lost Workday Operations

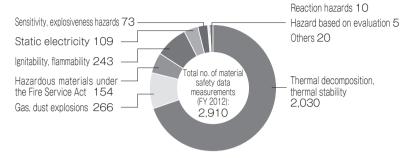
Sumitomo Chemical Employees

Facilities	Criteria for the President's Safety Award *1	Results
Ehime Works	3 million hours	Working to reach the target of 3 million hours
Ohe Works · SAT	3 million hours	Reached 6 million hours in June 2012
Chiba Works	3 million hours	Reached 9 million hours in August 2012
Osaka Works	3 million hours	Working to reach the target of 3 million hours
Oita Works	1 million hours	Reached 7 million hours in November 2012
Misawa Works	30 months	Working to reach the target of 120 months
Health & Crop Sciences Research Laboratory	30 months	Working to reach the target of 330 months
Tsukuba Research Laboratory*2	30 months	Working to reach the target of 300 months

Contractors/Affiliated Company Employees

Facilities	Criteria for the President's Safety Award *1	Results
EhimeAssociation (Plant maintenance)	24 months	(Reached 24 months in December 2012)
Ehime Logistics Association (Logistics)	24 months	(Expected to reach the target of 24 months in January 2014)
Ohe Association (Plant maintenance)	24 months	(Reached 48 months in March 2013)
Ohe Logistics Association (Logistics)	24 months	(Reached 48 months in March 2013)
Chiba Association (Plant maintenance)	24 months	(Expected to reach the target of 24 months in July 2014)
Chiba Logistics Association (Logistics)	24 months	(Reached 24 months in August 2012)
Osaka Association	24 months	(Reached 24 months in October 2012)
Okayama Association	48 months	(Reached 96 months in October 2012)
Gifu Association	48 months	(Expected to reach the target of 48 months in October 2013)
Oita Association	24 months	(Reached 24 months in April 2013)
Misawa Association	48 months	(Expected to reach the target of 48 months in September 2014)
Health & Crop Sciences Research Laboratory Association	48 months	(Expected to reach the target of 192 months in March 2015)
Tsukuba Research Laboratory Association	48 months	(Expected to reach the target of 48 months in March 2015)

■ Safety Achievements of Group Companies (Sumitomo Chemical Group Companies, excluding Sumitomo Chemical Co., Ltd.)


	Number of lost workday injuries	Frequency rate for lost workday injuries
FY 2010	10	0.30
FY 2011	8	0.24
FY 2012	7	0.22

Sumitomo Chemical has set facilityspecific criteria for the achievement of continuous periods of zeroaccident and zero-lost workday operations for employees as well as contractors. The President's Safety Award is presented to facilities in recognition of their satisfaction of the above-mentioned criteria.

* 1 Continuous periods of zero-accident, zero-lost workday operations * 2 Tsukuba Research Laboratory was reorganized into the Tsukuba Material Development Laboratory and the Advanced Materials Research Laboratory.

In fiscal 2012, both the number and rate of frequency of injuries resulting in lost workdays decreased from the previous fiscal year levels. We will further improve the safety achievements of the entire Group by promoting detailed information sharing on accidents throughout the Group.

■ Results of Material Safety Data Measurements

Safety Information Database

	Number of data sets	Year on year comparison
Accident prevention technology information	15,845	Increase by 793
Accident cause investigations	2,803	Increase by 748
Accident information	18,200	Increase by 496
As of March 31, 2013	36,848	

The Safety Engineering Group at the Production & Safety Fundamental Technology Center studies and assesses process safety, researches safety measures, measures and evaluates material safety data, complies a database on safety technologies, and undertakes training for safety engineers in its efforts to enhance process safety management and to prevent accidents such as fires and explosions. A total of 2,799 material safety data measurements were taken in fiscal 2012 (2.374 measurements in fiscal 2011) at the request of Sumitomo Chemical. In addition, 111 measurements were taken at the request of the Group companies.

A safety information database has been created by collecting information on accidents in Japan and overseas and preparing abstracts of such accidents. As of the end of March 2013, 36,848 sets of data were stored in the database (34,811 sets of data as of March 31, 2012). This system allows all employees at each Works or Research Laboratory to search stored abstracts, and abstracts and their original data can be viewed or printed at individual terminals. These data are also used in process hazard evaluations and case study examinations to prevent similar accidents. In addition, accident data are also disclosed to Group companies as necessary.

3 Responsible Care Audits

(Non-Consolidated as well as Group Companies in Japan and Overseas)

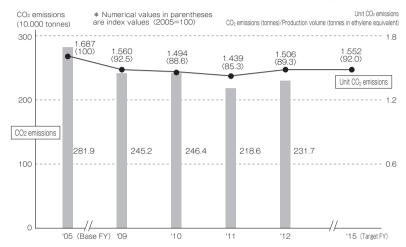
Audits Conducted

Responsible Care Audit Results

Facilities		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	Works	4	5	4	5	4	7	4	5	4	11	11	10	11
	Research Laboratories	2	1	0	1	1	0	1	1	0	1	1	0	1
Specialized Audits	Logistics Centers	0	0	1	0	0	1	0	0	1	0	0	0	0
Specialized Addits	Business Sectors	4	4	7	5	6	5	5	6	5	5	4	4	4
	Group Companies (Japan)	22	16	9	8	12	10	12	14	16	16	14	14	16
	Group Companies (Overseas)		2	1	2	3	1	4	4	4	3	6	7	5
Management Audits	Works and Research Laboratories	6	6	5	6	6	5	6	6	5	7	7	6	7
Total		38	34	27	27	32	29	32	36	35	43	43	41	44

Specialized Audits for Facilities and Business Sectors

Area	Facilities (Works, Research Laboratories)	Business Sectors (Head Office Business Sectors)	Total
Good (Important)	15	8	23
Needs Improvement	104	15	119
Needs to be Examined	55	11	66
Total	174	34	208


In fiscal 2012, a total of 44 specialized and management audits were conducted. The Sumitomo Chemical specialized audits resulted in a total of 208 items meriting comment. Audit items will be expanded and enhanced on an annual basis to ensure continual improvement.

4 Environmental Preservation (Non-Consolidated and Group Companies in Japan)

Reducing Greenhouse Gas Emissions

CO₂ (Non-Consolidated (Target: All Works))

CO₂ Emissions from Fossil Fuel for Captive Consumption and Corresponding Unit Emissions

* Implemented a review of all data in accordance with steps taken to update calculation methods to comply with Japan's Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures

In fiscal 2012, the volume of CO_2 emissions originating from fossil fuels consumed in-house was 2,317 kilotonnes, up 6.0% compared with the previous fiscal year. This was a decrease of 17.8% compared with fiscal 2005.

Target

Achieve an 8% improvement compared with fiscal 2005 in unit CO₂ emissions originating from fossil fuels consumed in-house by fiscal 2015.

Greenhouse Gases (All Six Gases) (Non-Consolidated (Target: All Facilities))

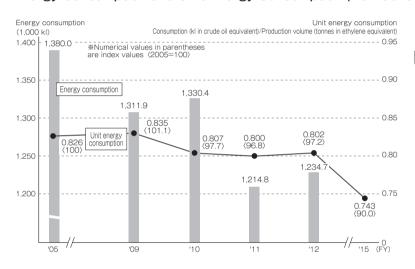
Emissions

10,000 tonnes in CO2 equivalent

		FY 2009	FY 2010	FY 2011	FY 2012
00	Energy sources	351.2	345.4	313.4	319.0
CO ₂	From other than energy use	10.7	10.9	9.8	6.2
Methane (CH ₄)		_	_	_	_
Nitrous oxide (N2	<u>2</u> O)	5.8	4.9	5.8	6.7
Hydrofluorocarb	on (HFC)			_	_
Perfluorocarbon	(PFC)			_	_
Sulfur hexafluori	de (SF ₆)		_	_	_

* Implemented a review of all data in accordance with steps taken to update calculation methods to comply with Japan's Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures

* CH4, HFC, PFC, and SF6 are outside the scope of reporting.


Energy Saving

Breakdown of Unit Energy Consumption (Non-Consolidated (Target: All Works))

	a Energy consumption (1,000 kl in crude oil equivalent)	b Production (1,000 tonnes in ethylene equivalent)	a/b Unit energy consumption
Ehime Works	423.7	677.0	0.63
Chiba Works	699.5	756.9	0.92
Osaka Works	33.1	26.7	1.24
Oita Works	37.2	27.1	1.37
Misawa Works	12.8	9.1	1.41
Ohe Works	28.4	42.1	0.67
Total	1,234.7	1,538.9	0.80

In fiscal 2012, energy consumption increased by 1.6% compared with the previous fiscal year to 1,234,700 kl (crude oil equivalent). Meanwhile, unit energy consumption remained roughly at the same level (a deterioration of 0.3%) compared with the previous fiscal year (a 2.9% improvement compared with the fiscal 2005 level).

Energy Consumption and Unit Energy Consumption (Non-Consolidated (Target: All Works))

Target

Improve unit energy consumption for fiscal 2015 by 10% compared with fiscal 2005.

Energy Consumption and CO₂ Emissions*1 (Non-Consolidated and Group Companies in Japan (Target: All Facilities))

	Energy consu (1,000 kl in crud	mption le oil equivalent)		from energy use
Group companies in Japan	1,679		4,289	
Works	1,649		4,232	
Non-manufacturing sites including the Head Offices and Research Laboratories	30		57	
Non-consolidated	1,247		3,190	
Works	1,235		3,167	
Non-manufacturing sites including the Head Offices and Research Laboratories	12		23	

The table on the left shows the results of Group companies in Japan (a total of 17 companies including Sumitomo Chemical*2) for fiscal 2012. These results are based on data reported to governmental authorities by each of the companies at the end of July 2013.

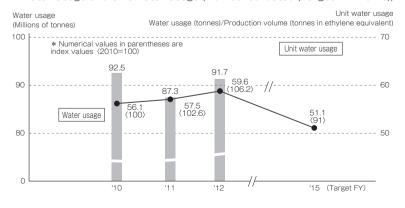
- *1. Calculated based on the Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures.
- *2. The scope of calculation covers the same participating companies in connection with section 5 of this data book titled "Unification of Group Environmental Preservation Targets."

Initiatives for Energy Saving and CO₂ Emissions Reduction in Logistics Operations (Non-Consolidated and Group Companies in Japan)

Energy Consumption and CO₂ Emissions from Logistics Operations (Non-Consolidated)

	2006	2007	2008	2009	2010	2011	2012
Energy consumption (1,000 kl in crude oil)	28.1	27.7	24.2	22.9	22.6	20.7	19.9
Unit energy consumption (kl/1,000 tonnes)	8.02	7.78	7.30	7.32	7.61	7.22	7.45
CO ₂ emissions (1,000 tonnes)	73.4	73.0	63.8	60.3	59.4	54.4	52.5

Energy Consumption and CO2 Emissions for Group Companies in Japan ("Two Specified Consigners")*


	2006	2007	2008	2009	2010	2011	2012
Energy consumption (1,000 kl in crude oil)	3.8	3.7	3.0	3.1	3.4	4.1	3.8
CO ₂ emissions (1,000 tonnes)	10.3	9.6	7.9	8.3	8.9	10.9	9.9

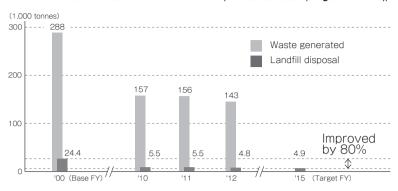
^{*} Totals for Nippon A&L Inc. and Nihon Oxirane Co., Ltd.

Sumitomo Chemical has been working to reduce the environmental impact of its logistic operations by continuously increasing transportation efficiency by upsizing delivery volumes, improving the modal shift rate and shortening transportation distances by changing storage facilities. As a result, even though the unit energy consumption for fiscal 2012 increased by 3.2% year on year, the unit energy consumption was decreased by 1.2% on average on a yearly basis since fiscal 2006.

Promoting Efficient Use of Water

Water Usage and Unit Water Usage (Non-Consolidated (Target: All Works))

Sumitomo Chemical has endeavored to promote the efficient use of water as a precious and essential resource. In fiscal 2012, the Company's unit water usage deteriorated by 3.7% compared with the previous year.


* Data for water usage do not include the volume of seawater used.

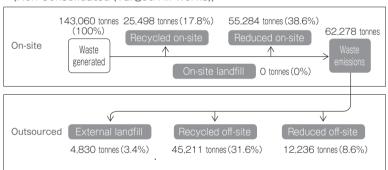
Target

Improve unit water usage in fiscal 2015 by 9% compared with the fiscal 2010 level.

■ Industrial Waste Reduction

Trends in Waste Generated and Landfill Amounts (Non-Consolidated (Target: All Works))

In April 2011, we began implementing measures to achieve the new target of reducing landfill disposal by 80% compared with the fiscal 2000 level by fiscal 2015. Landfill disposal in fiscal 2012 decreased to 4,830 tonnes, down 12.7% year on year (down 80.3% compared with the fiscal 2000 level).

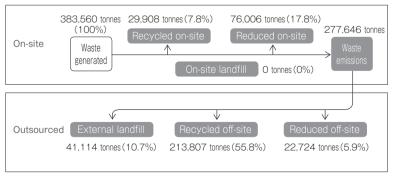

- * Figures for fiscal 2000 (the base fiscal year) include data for both the Gifu and Okayama Plants of the Osaka Works.
- * The amount of waste that was reduced offsite and disposed to landfill without being recycled was included in the amount of external landfill.

Target

Reduce landfill disposal by 80% compared with the fiscal 2000 level by fiscal 2015.

Waste Disposal Flow Chart and Results (FY 2012)

(Non-Consolidated (Target: All Works))



Recycled waste: Total amount of waste that was reused, recycled, or thermally recycled
Reduced waste: Total amount of

waste reduced through incineration, etc.

* Data for Group companies in Japan reflect totals for Sumitomo Chemical and its 16 Group companies in Japan.

(Group Companies in Japan (Target: All Works))

List of Results by Item in connection with the Disposal of Waste and Valuable Resources (Non-Consolidated (Target: All Works))

Unit: tonnes)

Type	Classification	Waste/ resource c		Waste	Valuable resource	Recycle	d on-site	Reduced on-site	Waste- valuable	On-site	Reduced	Recycle	d off-site	External
Туре	Classification	Waste	Valuable resource	Generated	Generated	Reused, recycled	Thermally recycled	Incineration, etc.	resource emissions	landfill	off-site	Reused, recycled	Thermally recycled	landfill
Burnt residue	Burnt residue	0		3203	0	0	0	0	3203	0	0	2945.8	0	257.2
	Inorganic sludge	0		6548	0	0	0	4226	2322	0	222	2100	0	0
Sludge	Organic sludge	0		4714	0	0	0	3560	1154	0	412.8	739.2	0	2
oldago	Inorganic and organic mixed sludge	0		39692.2	0	0	10965.8	14127.9	14380.8	0	1115.2	10312.6	167.8	2785.2
	Oil waste other than organic waste solvents	0		116.8	0	0	15.2	61	40.6	0	1	39.6	0	0
Oil waste	Organic waste solvents	0		31166	0	2920.3	10897.1	9834.5	7514.1	0	1770.3	4437.8	1233.8	72.2
	Organic waste solvents		0	0	279.7	0	0	0	279.7	0	0	279.7	0	0
Waste acid	Waste acid	0		4700.5	0	58	2.1	73.3	4567.1	0	1854.5	2708.2	0.1	4.3
Waste alkali	Waste alkali	0		38366.3	0	0	380.8	21814.4	16389.1	0	5628.6	9592.1	933.6	234.8
Waste plastic	Waste plastic other than waste synthetic rubber	0		6555.4	0	0	140.3	873.7	5541.4	0	745.9	4138	0.6	656.9
waste plastic	Waste plastic other than waste synthetic rubber		0	0	934.2	0	0	0	934.2	0	0	934.2	0	0
Waste paper	Waste paper	0		1047	0	0	101.2	650.4	295.4	0	51.2	244.1	0	0.1
waste paper	Waste paper		0	0	76.3	0	0	0	76.3	0	0	76.3	0	0
Wood waste	Wood waste	0		784.3	0	0	0	42.8	741.5	0	42.2	521	154	24.3
Textile waste	Textile waste	0		113	0	0	0	20	93	0	8.4	0	0	84.6
Animal and plant residues	Animal and plant residues	0		8.5	0	0	0	0	8.5	0	8.5	0	0	0
Madaliiia	Scrap iron	0		380.8	0	0	0	0	380.8	0	58.1	295	0	27.7
Metal waste	Scrap iron		0	0	4428.8	0	0	0	4428.8	0	0	4428.8	0	0
Glass and	Glass waste	0		297.1	0	0	0	0	297.1	0	2.2	245.9	0	49
pottery waste	Pottery waste	0		337.1	0	0	0	0	337.1	0	0	107.1	0	230
Debris	Debris	0		950.1	0	13	0	0	937.1	0	315.1	220	0	402
Soot and dust	Soot and dust	0		4079.5	0	0	4.5	0	4075	0	0	4075	0	0
			Total	143060	5719	2991	22507	55284	67997	0	12236	48440	2490	4830

Digitization of Manifests to be Prepared Pursuant to the Waste Management and Public Cleansing Act (Non-Consolidated (Target: All Works))

	Number of manifests issued	Number of manifests digitized	Digitization rate
FY 2010	17,745	12,609	71%
FY 2011	19,243	15,048	78%
FY 2012	17,502	13,259	76%

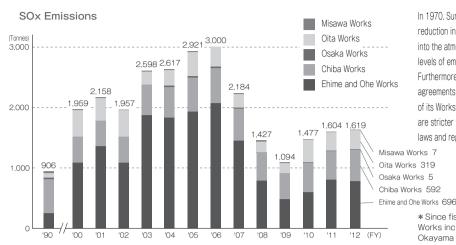
Sumitomo Chemical has been fostering the digitization of manifests to improve operational efficiency and ensure compliance with the law and transparency of data. In fiscal 2012, the Company issued 17,502 manifests, of which 13,259 (76%) were electronic.

PCB Waste (Non-Consolidated and Group Companies in Japan (Target: All Works)

Storage and Control of High Concentrations of PCB Waste as of the End of Fiscal 2012 (Non-Consolidated and the Group)

	Number of units of PCB waste	Volume of PCB(m³)
Non-consolidated	122 (stored: 116/in use: 6)	15.3
Group	1,393 (stored: 1004/in use: 388)	16.8

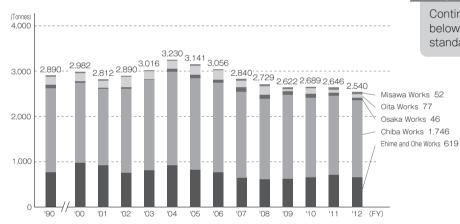
- * Low-level PCB waste is not included.
- * Group data reflects totals for Sumitomo Chemical and its 16 Group companies in Japan.
- * Handling of ballasts of fluorescent lamps and mercury lamps was: excluded from the data (Sumitomo Chemical Co. Ltd.) excluded from the data, except for some Group companies (Group)


Target

Properly collect and store high concentrations of PCB waste and complete treatment of this waste by March 2014. (Delays caused by the circumstances of PCB waste disposal companies are excluded.)

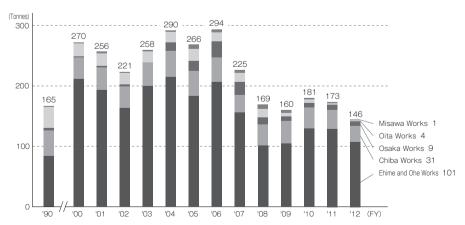
In accordance with the Act on Special Measures concerning Promotion of Proper Treatment of PCB Wastes, Sumitomo Chemical properly collects high concentration of polychlorinated biphenyls (PCB) waste*. The Company then stores this industrial waste, which is subject to special controls, in specified areas within the Company's waste storage facilities, subsequently ensuring strict control of this waste. Sumitomo Chemical plans to treat all PCB waste by March 2014, ahead of the deadline specified under the Act

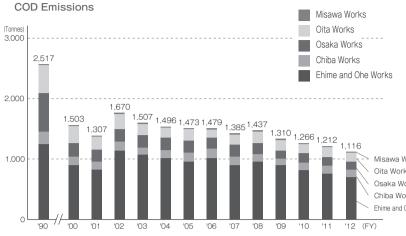
* Capacitors, transformers and other electronic devices that contain PCB insulating oil


■ Preventing Pollution Atmospheric emissions of SOx, NOx, soot, and dust

In 1970, Sumitomo Chemical achieved a marked reduction in the release of SOx, NOx, soot, and dust into the atmosphere, and continued to maintain low levels of emissions from 1980 to the present. Furthermore, the Company has concluded cooperative agreements with local municipal governments at each of its Works, establishing voluntary control levels that are stricter than the standards given under applicable laws and regulations.

* Since fiscal 2004, data for the Osaka Works include data for both the Gifu and Okayama Plants.

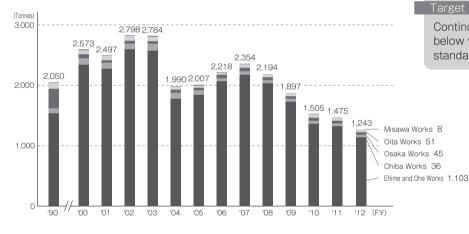

NOx Emissions


argat

Continue to sustain levels below voluntary control standard values.

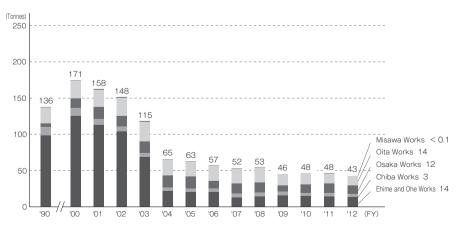
Soot and Dust Emissions

Water emissions of COD, nitrogen, and phosphorus



Sumitomo Chemical has also concluded cooperative agreements with local municipal governments to establish voluntary control levels for COD, nitrogen, and phosphorus released into waterways. These standards are also stricter than those established under applicable laws and regulations. A number of measures have been implemented to cut emissions, in line with fifth-generation Water Quality Standards, and emissions of nitrogen and phosphorus in particular have been significantly reduced since fiscal 2004.

Misawa Works 15 Oita Works 166 Osaka Works 137 Chiba Works 121 Ehime and Ohe Works 677


> * Since fiscal 2004, data for the Osaka Works include data for both the Gifu and Okayama Plants

Nitrogen Emissions

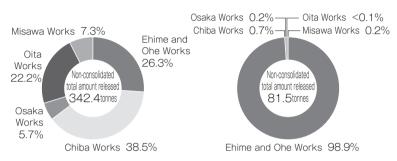
Continue to sustain levels below voluntary control standard values.

Phosphorus Emissions

■ Response to the Pollutant Release and Transfer Register

Release and Transfer of PRTR Substances in Fiscal 2012 (Non-Consolidated (Target: All Works))

			and Transfer of PRTR Substances In Fiscal 2012 (No			nt Relea		7 111 11		nt Trans	ferred
No.	PRTR Substances	JCIA Substances	Name of Chemical Compound	Air	Water	Soil	Landfill	l Total	Sewage		Total
1	0	0	Zinc compounds (water-soluble)	0.0	2.3	0.0	0.0	2.3	0.0	139.1	139.1
2	0	0	Acrylic acid and its water-soluble salts	<0.1	0.0	0.0	0.0	< 0.1	0.0	0.0	0.0
3	\circ	\circ	Methyl acrylate	4.5	0.0	0.0	0.0	4.5	0.0	0.0	0.0
4	0	\circ	Acrylonitrile	3.5	0.0	0.0	0.0	3.5	0.0	0.0	0.0
5		0	Adipic acid	0.7	63.8	0.0	0.0	64.5	0.0	0.0	0.0
6	0	0	Acetaldehyde	0.3	<0.1	0.0	0.0	0.3	0.0	0.0	0.0
7	0	0	Acetonitrile	6.5	0.0	0.0	0.0	6.5	0.0	103.3	103.3
8		0	Acetone	40.3	0.3	0.0	0.0	40.6			106.3
9	0	0	Aniline	0.8	0.0	0.0	0.0	0.8	0.0	29.1	29.1
10	0	0	2-Aminoethanol	0.0	0.2	0.0	0.0	0.2	0.0	12.8	12.8
11	0	0	m-Aminophenol 3-Amino-1-propene	0.0	<0.1	0.0	0.0	<0.1	0.0	2.1	2.1
12	0	0	Allyl alcohol	0.0	<0.1	0.0	0.0	<0.1	0.0	0.0	0.0
14	0	0	Aluminum compounds (water-soluble)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0	Ö	Antimony and its compounds	0.0	0.0	0.0	0.0	0.0	0.0	7.0	7.0
16		0	Ammonia	2.7	4.1	0.0	0.0	6.8	0.0	<0.1	<0.1
17	0	Ö	Isobutyraldehyde	0.7	0.0	0.0	0.0	0.7	0.0	0.0	0.0
18		O	2-Ethyl-1-hexanol	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	0	Ŏ	Ethylbenzene	8.0	0.1	0.0	0.0	8.1	0.2	50.4	50.6
20	0	0	Ethylene oxide	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21		0	Ethylene glycol	0.0	5.3	0.0	0.0	5.3	0.0	0.3	0.3
22	0	0	Ethylenediaminetetraacetic acid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	\circ	\circ	Epichlorohydrin	1.2	1.1	0.0	0.0	2.3	0.0	0.0	0.0
24	\circ	\circ	1,2-Epoxypropane (also known as propylene oxide)	0.0	< 0.1	0.0	0.0	< 0.1	0.0	0.0	0.0
25		0	Ammonium chloride	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26		\circ	Hydrogen chloride (excluding hydrochloric acid)	<0.1	0.0	0.0	0.0	<0.1	0.0	0.0	0.0
27	_	0	Chlorine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	0	0	ε-Caprolactam	0.4	29.4	0.0	0.0	29.8	0.0	1.2	1.2
29	_	0	Formic acid	0.0	0.0	0.0	0.0	0.0	0.0	<0.1	<0.1
30	0	0	2,6-Xylenol	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.4
31	0	0	Xylene	6.2	0.1	0.0	0.0	6.3	0.2	37.5	37.7
32	0	0	Cumene	10.9	<0.1	0.0	0.0	10.9	0.0	0.0	0.0
33	0	0	Cresol Chlassouthania said	0.2	0.0	0.0	0.0	0.2	0.0	0.0	0.0
34	\circ	0	Chlorosulphonic acid Chloroaniline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36	0	0	Chloroethane	9.1	0.0	0.0	0.0	10.3	0.0	0.0	0.0
37	0	0	p-Chlorotoluene	<0.1	<0.1	0.0	0.0	<0.1	0.0	0.0	0.0
38	0	0	3-Chloropropene (also known as allyl chloride)	6.3	<0.1	0.0	0.0	6.3	0.0	0.0	0.0
39	Õ	Ö	Chlorobenzene	9.8	<0.1	0.0	0.0	9.8	0.0		220.0
40	Ö	Ö	Chloroform	<0.1	0.0	0.0	0.0	<0.1	0.0	39.6	39.6
41	Ŏ	Õ	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42		Ö	Ethyl acetate	14.9	0.0	0.0	0.0	14.9	0.0	90.9	90.9
43	0	Õ	Vinyl acetate	64.6	<0.1	0.0	0.0	64.6	0.0	0.0	0.0
44	0	0	Salicyl aldehyde	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	0	0	Inorganic cyanide compounds (excluding complex salts and cyanates)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46		\circ	Diethanolamine	0.0	0.2	0.0	0.0	0.2	0.0	0.0	0.0
47	\circ	\circ	1,4-Dioxane	0.1	0.0	0.0	0.0	0.1	1.7	119.5	121.2
48		\circ	Cyclohexanol	10.5	<0.1	0.0	0.0	10.5	0.0	13.7	13.7
49		\circ	Cyclohexane	99.3	<0.1	0.0	0.0	99.3	0.0	0.0	0.0
50	0	\circ	Cyclohex-1-ene-1,2-dicarboximidomethyl=(1RS)-sis-trans-2,2-dimethyl-3-(2-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		_	methylprop-1-enyl)cyclopropanecarboxylate (also known as tetramethrin)								
51	0	0	Cyclohexylamine	0.0	<0.1	0.0	0.0	<0.1	0.0	1.8	1.8
52	0	0	1,2-Dichloroethane	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
53	0	_	1,2-Dichloropropane	0.0	0.0	0.0	0.0	0.0			684.8
54	0	0	1,3-Dichloropropene (also known as D-D)	0.3	<0.1	0.0	0.0	0.3			445.2
55	0	0	Dichlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	2.1	2.1
56	0	0	Dichloropentafluoropropane (also known as HCFC-225)	0.6	0.0	0.0	0.0	0.6	0.0	0.0	0.0
57	0	0	Dichloromethane (also known as methylene chloride)	7.9	0.0	0.0	0.0	7.9	0.0	33.9	33.9
58	0	0	Dicyclopentadiene 2.4 Dicitrophonel	0.1	0.0	0.0	0.0	0.1	0.0	7.1	7.1 44.5
59	0	0	2,4-Dinitrophenol Diphenylamine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60	0	0	1,3-Diphenylguanidine	0.0	0.0	0.0	0.0	0.4	0.0	14.5	14.5
62	0	0	2,6-Di-tert-butyl-4-cresol	0.0	<0.1	0.0	0.0	<0.4	0.0	0.0	0.0
02	\cup	\cup	Z,O Di toit butyr=-010001	, 0.0	\U. I	0.0	0.0	~∪. I	0.0	0.0	0.0


No.	PRTR Substances	JCIA Substances	Name of Chemical Compound	Ai		nount Rel	eased Landfill	Total	Amou	nt Trans Waste	ferred Total
63	0	0	2,4-Di-tert-butylphenol	<0.1			0.0	<0.1	0.0	0.0	0.0
64	Ö	Ö	N.N-Dimethylacetamide	<0.1			0.0	<0.1	0.0	8.3	8.3
65	\circ	\circ	Dimethylamine	0.0	41.6	0.0	0.0	41.6	0.0	0.0	0.0
66	\circ	\circ	Dimethyl sulfide	0.0	< 0.1	0.0	0.0	< 0.1	0.0	0.0	0.0
67	0	0	N,N-Dimethylformamide	0.6			0.0	0.6	0.0	126.9	126.9
68		0	Hydrogen bromide	0.0			0.0	0.0	0.0	0.0	0.0
69 70	0	0	Oxalic acid Bromine	0.0			0.0	0.0	0.0	0.0	0.0
71	0	0	Water-soluble bromates	0.0			0.0	0.0	0.0	0.0	0.0
72		Ö	Nitric acid	0.3			0.0	0.3	0.0	<0.1	<0.1
73	0	Õ	Styrene	3.7			0.0	3.7	0.0	0.0	0.0
74	0	0	Dioxins	15.3	39.0		0.0	54.3	<0.1	38.8	38.8
75	0	0	Thiourea	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4
76		0	Tetrahydrofuran	4.8			0.0	6.1	0.0	45.7	45.7
77	0	0	Terephthalic acid	0.0			0.0	0.0	0.0		130.6
78 79	0	0	Water-soluble copper salts Sodium dodecyl sulfate	0.0			0.0	<0.1	0.0	0.0	0.0
80	0	0	Triethanolamine	0.0			0.0	0.0	0.0	0.0	0.0
81	0	Ö	Triethylamine	3.0			0.0	7.5	0.5	28.1	28.6
82	Ö	Ö	2,4,6-Trichloro-1,3,5-triazine	0.0			0.0	0.0	0.0	0.0	0.0
83	0	0	Trichlorofluoromethane (also known as CFC-11)	0.0			0.0	0.0	0.0	0.0	0.0
84	0	\circ	1,2,3-Trichloropropane	<0.1	0.0	0.0	0.0	< 0.1	0.0	372.4	372.4
85		0	Trimethylamine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
86	0	0	Toluidine	0.0			0.0	0.0	0.0	2.2	2.2
87	0	0	Toluene	120.7				120.8	1.2	1141.4	1142.6
88	0	0	Naphthalene Niglial agreements	0.0			0.0	<0.1	0.0	0.0	0.0
89	0	0	Nickel compounds Nitrobenzene	0.0			0.0	0.0	0.0	0.9 52.0	0.9 52.0
91	Ö	Ö	Arsenic and its inorganic compounds	0.6			0.0	0.0	0.0	0.0	0.0
92	Ö	Ö	Hydrazine	<0.1			0.0	<0.1	0.0	6.4	6.4
93	Ŏ	Õ	Hydroquinone	0.0			0.0	0.0	0.0	0.0	0.0
94	0	0	Pyridine	<0.1	0.1	0.0	0.0	0.1	0.0	16.5	16.5
95	0	\circ	Phenylenediamine	0.0	< 0.1	0.0	0.0	<0.1	0.0	0.0	0.0
96	0	0	1,3-Butadiene	0.0			0.0	0.0	0.0	0.0	0.0
97		0	Diisobutyl phthalate	0.0			0.0	0.0	0.0	0.0	0.0
98	0	0	Di-n-butyl phthalate	0.0			0.0	0.0	0.0	0.0	0.0
99	0	0	Bis(2-ethylhexyl)phthalate Butyl alcohol	0.0			0.0	0.0	0.0	9.1	9.1
101	0	Ö	tert-Butyl hydroperoxide	0.0			0.0	0.0	0.0	0.0	0.0
102	Ö	Ö	2-tert-Butyl-5-methylphenol	0.1			0.0	0.1	0.0	0.0	0.0
103		0	Propyl alcohol	1.8		0.0	0.0	1.8	0.0	35.5	35.5
104	0	\circ	1-Bromopropane	<0.1	0.0	0.0	0.0	<0.1	0.0	0.0	0.0
105	0	0	2-Bromopropane	0.0			0.0	0.0	0.0	0.2	0.2
106	0	0	Hexadecyltrimethylammonium chloride	<0.1			0.0	<0.1	0.0	0.0	0.0
107	0	0	n-Hexane	448.0				448.1		251.7	
108	0	0	Benzyl chloride Benzaldehyde	<0.1			0.0	<0.1	0.0	0.0	0.0
110	Ö		Benzene	5.2			0.0	5.7	0.0	0.0	0.0
111		Ŏ	Pentaerythritol	0.0			0.0	0.0	0.0	0.0	0.0
112	0	0	Boron compounds	0.0			0.0	0.0	0.0	0.0	0.0
113	\circ	\circ	Polyoxyethylene alkyl ether (alkyl C=12-15) and its mixture	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
114	0	0	Formaldehyde	0.1			0.0	0.1	2.1	0.0	2.1
115	0	0	Phthalic anhydride	0.0			0.0	0.0	0.0	0.0	0.0
116	0	0	Maleic anhydride	0.0			0.0	0.0	0.0	0.0	0.0
117 118	0	0	Manganese and its compounds Methacrylic acid	0.0			0.0	<0.1	0.0	0.0	0.0
119	0	0	2,3-Epoxypropyl methacrylate	8.1			0.0	8.1	0.0	0.0	0.0
120	0	0	Methyl methacrylate	20.6			0.0	20.6	0.0	46.1	46.1
121	Ŏ	Ŏ	Methylamine	0.2			0.0	0.2	0.0	6.0	6.0
122		0	Methyl alcohol	488.7	0.3	0.0	0.0	489.0	0.0	1359.7	1359.7
123	0	0	Methylnaphthalene	1.8			0.0	1.8	0.0	0.0	0.0
124		0	N-Methylpyrrolidone	<0.1			0.0	<0.1	0.0	1.8	1.8
125		0	Methylbutylketone	8.3			0.0	21.4	0.0	3.9	3.9
126	0	0	Morpholine Sulfurio gold	2.2			0.0	0.3	0.0	0.0	0.0
127 128		0	Sulfuric acid Diethyl sulfate	0.0			0.0	0.0	0.0	58.0	58.0
129		0	Phosphorus and its compounds	0.0			0.0	20.3	0.0	5.5	5.5
. 20			Total substances used by Sumitomo Chemical: 129 (FY 2012)		191.2			1217.9	5.8	5941.1	5946.9
*I Indo	- the F	DTD	aw, significant figures are presented as double-digit kilograms. Unit data in this report						•		

*Under the PRTR Law, significant figures are presented as double-digit kilograms. Unit data in this report, however, are in tonnes (mg-TEQ for dioxins) rounded to the nearest one decimal place.

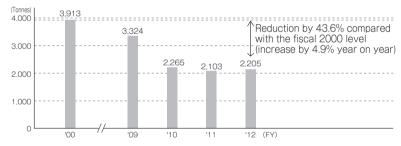
Release and Transfer of PRTR Substances (FY 2012) (Non-Consolidated and Group Companies in Japan) (Tapan)

	1			_				
	 	Released) 	Transferred				
	Air	Water	Subtotal	Sewage	Waste	Subtotal		
PRTR substances								
Non-consolidated (96 substances)	342.4	81.5	423.9	5.8	4219.1	4224.9		
Group companies in Japan	572.9	121.5	694.4	9.1	6226.3	6235.4		
JCIA PRTR substances								
Non-consolidated(129 substances)	1026.7	191.2	1217.9	5.8	5941.1	5946.9		

PRTR Substances Released by Works (Non-Consolidated)

Released into the Air (PRTR Substances)

Released into Waterways (PRTR Substances)


fiscal 2008 level by fiscal 2015 on a non-consolidated basis. The total release in fiscal 2012 was 423.9 tonnes, down 13.6% compared with the previous fiscal year. We will continue making efforts to reduce our environmental impact through the practice of risk management. * Figures for the release and transfer of

In April 2011, we began implementing measures to achieve the new target of reducing the total release of PRTR substances by 60% compared with the

PRTR substances for Group companies in Japan for fiscal 2012 reflect totals for Sumitomo Chemical and its 16 Group companies in Japan.

Reduce the total release of PRTR substances by 60% compared with the fiscal 2008 level by fiscal 2015.

Initiatives to Reduce Emissions of Volatile Organic Compounds (Non-Consolidated (Target: All Works))

*Data for each of the past fiscal years (2000, 2009 to 2011) have been revised and steps have been taken to improve the accuracy of calculation methods.

In April 2011, we began implementing measures to achieve the new target of maintaining a 30% reduction in VOC emissions compared with fiscal 2000. Total VOC emissions in fiscal 2012 decreased by 43.6% compared with the fiscal 2000 level to 2,205 tonnes (up 4.9% year on year due to increased production).

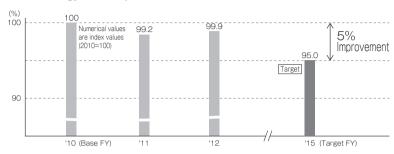
Maintain a 30% reduction in VOC emissions compared with fiscal 2000.

Sumitomo Chemical maintains strict control of cooling devices that employ specified CFCs (designated in the Act on the Protection of the Ozone Layer Through the Control of Specified Substances and Other Measures) that are highly damaging to the ozone layer. The Company is committed to ensuring that specified CFCs are not accidentally released into the atmosphere from devices containing them, and carries out proper recovery, transportation and destruction of specified CFCs contained in refrigeration units upon disposal.

* Data for Group companies in Japan reflect totals for Sumitomo Chemical and its 16 Group companies in Japan.

Prevention of Ozone Laver Damage (Non-Consolidated and Group Companies in Japan (Target: All Works))

Number of Refrigeration Units that Use Specified CFCs as Coolants (as of the end of fiscal 2012)


Туре	Non-consolidated	Group companies in Japan
CFC11	13	15
CFC12	5	62
CFC113	0	0
CFC114	0	0
CFC115	0	13
Total	18	90

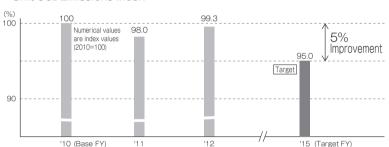
Eliminate the use of refrigeration units that use specified CFCs (CFC11, CFC12, CFC113, CFC114, and CFC115) as coolants by 2025.

5 Unification of Group Environmental Preservation Targets (Group Companies in Japan and Overseas)

Group Companies in Japan (Target: All Works)

Unit Energy Consumption Index

Improvement in unit energy consumption


Target

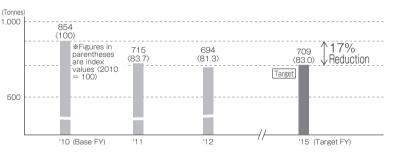
Improve unit energy consumption by 5% compared with fiscal 2010 levels by fiscal 2015.

Results

Unit energy consumption in fiscal 2012 improved by 0.1% compared with fiscal 2010 levels.

Unit CO2 Emissions Index

Improvement in unit CO2 emissions


Target

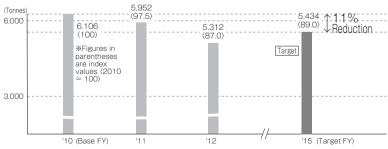
Improve unit CO₂ emissions by 5% compared with fiscal 2010 levels by fiscal 2015.

Results

Unit CO₂ emissions in fiscal 2012 improved by 0.7% compared with fiscal 2010 levels.

Volume of PRTR Substances Released (into the Air and Water) and PRTR Substance Emissions Index

Reduction of volume of PRTR substances released


Target

Reduce the total volume of PRTR substances released (into the air and water) by 17% compared with fiscal 2010 levels by fiscal 2015.

Raculte

Total volume of PRTR substances released in fiscal 2012 was reduced by 18.7% compared with fiscal 2010 levels.

Landfill Disposal Amount and Landfill Disposal Index

Reduction of landfill disposal amount

Torgot

Reduce landfill disposal amount by 11% compared with fiscal 2010 levels by fiscal 2015.

Regulto

Landfill disposal amount in fiscal 2012 was reduced by 13.3% compared with fiscal 2010 levels.

Group-wide quantitative targets in Japan were established, and specific measures to achieve these targets are being implemented at all Group companies in Japan in order to reduce primary environmental impact systematically by fiscal 2015. These cover unit energy consumption, unit CO₂ emissions, release of PRTR substances (into the air and water), and amounts of landfill disposal.

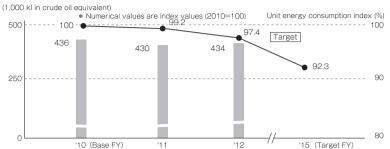
*Data for each of the past fiscal years (2010 to 2011) and the target fiscal year (2015) have been revised and steps have been taken to improve the accuracy of calculation methods *Please refer to pages 15 and 16 for details regarding the scope of calculation of Group companies in Japan by item.

■ Targets of Group Companies in Japan

Energy Saving and Global Warming Initiatives						
Asahi Chemical Co., Ltd.	\cdot Reduce energy consumption by 20% compared with fiscal 2010 by fiscal 2015 \cdot Improve unit CO2 emissions from energy use by 20% compared with fiscal 2010 by fiscal 2015					
Sumika-Kakoushi Co., Ltd.	· Improve unit energy consumption by 1% annually					
Koei Chemical Co., Ltd.	· Improve unit energy consumption by an average of at least 1% per year					
Thermo Co., Ltd.	· Improve energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit $\rm CO_2$ emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
SanTerra Co., Ltd.	· Improve unit energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
Shinto Paint Co., Ltd.	· Improve energy consumption by 3% compared with fiscal 2010 by fiscal 2015 · Improve unit ${\rm CO_2}$ emissions from energy use by 3% compared with fiscal 2010 by fiscal 2015					
Sumika Color Co., Ltd.	· Improve unit energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
Dainippon Sumitomo Pharma Co., Ltd.	· Improve unit energy consumption by at least 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by at least 5% compared with fiscal 2010 by fiscal 2015					
Sumika Styron Polycarbonate Limited	· Improve unit energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
Sumika Bayer Urethane Co., Ltd.	· Improve unit energy consumption by 7% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 7% compared with fiscal 2010 by fiscal 2015					
Taoka Chemical Co., Ltd.	· Improve unit energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
Nippon A&L Inc.	· Improve unit energy consumption by 5% compared with fiscal 2010 by fiscal 2015 · Improve unit CO_2 emissions from energy use by 5% compared with fiscal 2010 by fiscal 2015					
Nihon Medi-Physics Co., Ltd.	\cdot Reduce energy consumption by 1% annually \cdot Control unit CO_2 emissions from energy use to below fiscal 2010 levels.					
Nihon Oxirane Co., Ltd.	· Improve unit energy consumption by 1% annually · Improve unit CO ₂ emissions from energy use by 1% annually					
Sumika Agrotech Co., Ltd.	$\cdot \ \text{Improve unit energy consumption by } 5\% \ \text{compared with fiscal } 2010 \ \text{by fiscal } 2015 \\ \cdot \ \text{Improve unit } CO_2 \ \text{emissions from energy use by } 5\% \ \text{compared with fiscal } 2010 \ \text{by fiscal } 2015 \\$					
Sumitomo Chemical Co., Ltd.	· Improve unit energy consumption by 10% compared with fiscal 2005 by fiscal 2015 · Improve unit ${\rm CO_2}$ emissions from energy use by 15% compared with fiscal 2005 by fiscal 2020					

PRTR Initiatives

Asahi Chemical Co., Ltd.	· Reduce amount of PRTR substances released (into the air and water) during manufacturing processes to zero
Sumika-Kakoushi Co., Ltd.	· Maintain amount released (into the air and water) at the fiscal 2010 level
Koei Chemical Co., Ltd.	· Control the amount of release increase to correspond to production levels
Thermo Co., Ltd.	· Maintain zero release (into the air and water)
SanTerra Co., Ltd.	· Maintain zero release (into the air and water)
Shinto Paint Co., Ltd.	· Reduce amount released (into the air and water) by 5% compared with fiscal 2010 in fiscal 2015
Sumika Color Co., Ltd.	· Reduce amount released (into the air and water) by 10% compared with fiscal 2010 by fiscal 2015
Sumitomo Joint Electric Power Co., Ltd.	· Maintain zero release (into the air and water)
Dainippon Sumitomo Pharma Co., Ltd.	· Control the amount released (into the air and water) to below fiscal 2010 levels by fiscal 2015
Sumika Styron Polycarbonate Limited	· Maintain amount released (into the air and water) at the fiscal 2010 level
Sumika Bayer Urethane Co., Ltd.	· Reduce amount released (into the air and water) by 10% compared with fiscal 2010 by fiscal 2015
Taoka Chemical Co., Ltd.	· Reduce amount released (into the air and water) by 5% compared with fiscal 2010 by fiscal 2015
Nippon A&L Inc.	· Reduce amount released (into the air and water) by 20% compared with fiscal 2010 by fiscal 2015
Nihon Medi-Physics Co., Ltd.	· Maintain amount released (into the air and water) at the fiscal 2010 level
Nihon Oxirane Co., Ltd.	· Reduce amount of molybdenum released into the water to 10 tonnes by fiscal 2015
Sumika Agrotech Co., Ltd.	· Maintain amount released (into the air and water) at the fiscal 2010 level
Sumitomo Chemical Co., Ltd.	· Reduce amount released (into the air and water) by 60% compared with fiscal 2008 by fiscal 2015

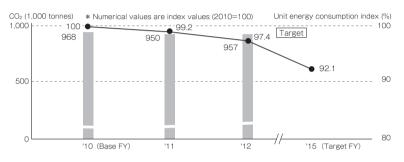

Landfill Disposal Reduction Initiatives

Asahi Chemical Co., Ltd.	· Maintain landfill disposal at the fiscal 2010 level
Sumika-Kakoushi Co., Ltd.	· Maintain landfill disposal at the fiscal 2010 level
Koei Chemical Co., Ltd.	· Reduce landfill disposal by 25% compared with fiscal 2010 by fiscal 2015
Thermo Co., Ltd.	· Reduce landfill disposal by 20% compared with fiscal 2010 by fiscal 2015
SanTerra Co., Ltd.	· Maintain landfill disposal at the fiscal 2010 level
Shinto Paint Co., Ltd.	· Reduce landfill disposal by 5% compared with fiscal 2010 by fiscal 2015
Sumika Color Co., Ltd.	· Reduce landfill disposal by 5% compared with fiscal 2010 by fiscal 2015
Dainippon Sumitomo Pharma Co., Ltd.	· Reduce landfill disposal to 1% or less of waste generated by fiscal 2015
Sumika Styron Polycarbonate Limited	· Maintain landfill disposal at the fiscal 2010 level
Sumika Bayer Urethane Co., Ltd.	· Maintain landfill disposal at the fiscal 2010 level
Taoka Chemical Co., Ltd.	· Reduce landfill disposal by 5% compared with fiscal 2010 by fiscal 2015
Nippon A&L Inc.	· Control landfill disposal to below fiscal 2010 levels
Nihon Medi-Physics Co., Ltd.	· Control landfill disposal to below fiscal 2010 levels
Nihon Oxirane Co., Ltd.	· Reduce landfill disposal by 80% compared with fiscal 2000 by fiscal 2015
Sumika Agrotech Co., Ltd.	· Reduce landfill disposal by 50% compared with fiscal 2010 by fiscal 2015
Sumitomo Chemical Co., Ltd.	· Reduce landfill disposal by 80% compared with fiscal 2000 by fiscal 2015

Individual company targets that formed the basis of the unified Group targets (determined specific target values) for the major areas of environmental preservation management were as above.

■ Group Companies Overseas (Target: All Works)

Energy Consumption and Unit Energy Consumption Indices

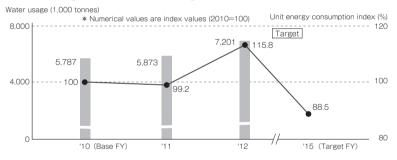


Improvement in Unit Energy Consumption

Improve unit energy consumption by 7.7% compared with fiscal 2010 levels by fiscal 2015.

Unit energy consumption in fiscal 2012 improved by 2.6 % compared with fiscal 2010 levels.

CO₂ Emissions (Energy Sources) and Unit CO₂ Emissions Indices



Improvement in Unit CO2 Emissions

Improve unit CO2 emissions by 7.9% compared with fiscal 2010 levels by fiscal 2015.

Unit CO₂ emissions in fiscal 2012 improved by 2.6 % compared with fiscal 2010 levels.

Water Usage and Unit Water Usage Indices

Improvement in Unit Water Usage

Improve unit water usage by 11% compared with fiscal 2010 levels by fiscal 2015.

Unit water usage in fiscal 2012 deteriorated by 15.8% compared with fiscal 2010 levels. This deterioration was largely attributable to an increase in poor unit water usage production volume and such factors as a decrease in sales.

For all 10 principal Group companies overseas, unified quantitative targets for fiscal 2015, corresponding to the indicators for Group companies in Japan, were established with regard to unit energy consumption, unit CO2 emissions, and unit water usage. The Group companies overseas are proactively taking initiatives to achieve these targets.

* Data for each of the past fiscal years (2010 and 2011) as well as targets for fiscal 2015 have been revised and steps have been taken to improve the accuracy of calculation methods.

These figures reflect the totals for the following ten Group companies overseas:

Singapore

- Sumitomo Chemical Singapore Pte Ltd
- The Polyolefin Company (Singapore) Pte. Ltd.

Thailand (Bangkok, Samutprakarn)

- Sumipex (Thailand) Co., Ltd.
- · Bara Chemical Co., Ltd.

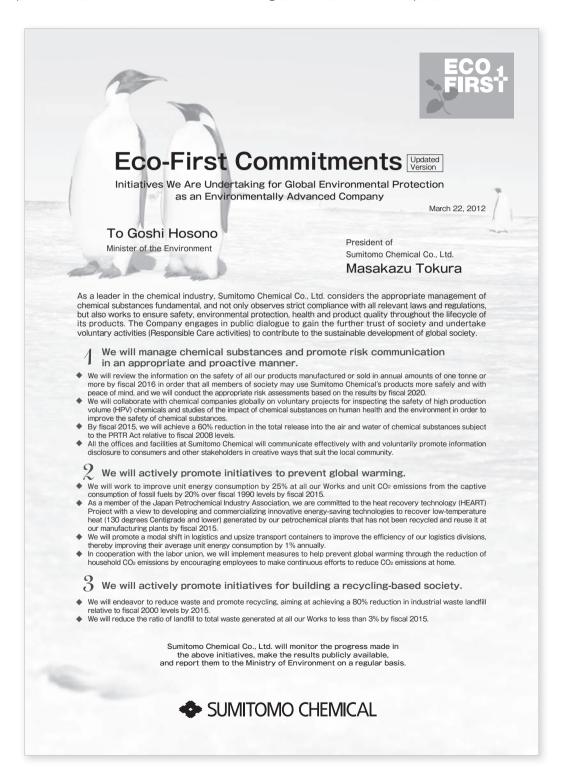
China (Dalian, Wuxi)

- Dalian Sumika Chemphy Chemical Co., Ltd.
- Sumika Electronic Materials (Wuxi) Co., Ltd.

Taiwan (Kaohsiung, Tainan)

- Sumipex TechSheet Co., Ltd.
- · Sumika Technology Co., Ltd.

India (Mumbai)


SC Enviro Agro India Private Ltd.

South Korea (Seoul)

. Dongwoo Fine-Chem Co., Ltd.

6 Fco-First Commitments

In March 2012, Sumitomo Chemical reported the progress and results of its efforts to fulfill the Eco-First Commitments to the Japanese Minister of the Environment while announcing its Eco-First Commitments Updated Version.

Sumitomo Chemical Co., Ltd. Ehime Works General Affairs Department 5-1, Sobiraki-cho, Niihama City, Ehime Prefecture 792-8521, Japan

Tel: +81-897-37-1711 Fax: +81-897-37-4161

Sumitomo Chemical Co., Ltd. Chiba Works General Affairs Department

5-1, Anesaki-Kaigan, Ichihara City, Chiba Prefecture 299-0195, Japan

Tel: +81-436-61-1313 Fax: +81-436-61-2229

Sumitomo Chemical Co., Ltd. Osaka Works General Affairs Department (Kasugade)

1-98, Kasugade-Naka 3-chome, Konohana-ku, Osaka City 554-8558, Japan

Tel: +81-6-6466-5022 Fax: +81-6-6466-5460

*For information concerning the Utajima Pilot Production Department, Gifu Plant, and Okayama Plant of the Osaka Works, please contact the Osaka Works (Kasugade).

Sumitomo Chemical Co., Ltd. Ohe Works General Affairs Department

1-1, Ohe-cho, Niihama City, Ehime Prefecture 792-0015, Japan

Tel: +81-897-37-1800 Fax: +81-897-37-1158

Sumitomo Chemical Co., Ltd. Oita Works General Affairs Department

2200, Oaza-Tsurusaki, Oita City, Oita Prefecture 870-0106, Japan

Tel: +81-97-523-1111 Fax: +81-97-523-1121

Sumitomo Chemical Co., Ltd. Misawa Works General Affairs Department

Aza-Sabishirotai, Oaza-Misawa, Misawa City, Aomori Prefecture 033-0022, Japan

Tel: +81-176-54-2111 Fax: +81-176-54-2163