06 / エネルギー・機能材料部門 Energy & Functional Materials

最近のトピックス // Topics

2010	■大分工場にレゾルシン製造設備を新設。	■Completed a new plant to produce Resorcinol in the Oita Works.
2012	■愛媛工場の高純度アルミナ製造設備が完成。	■ Expanded production capacity for high-purity alumina in the Ehime Works.
2013	■韓国におけるリチウムイオン二次電池材料用 高純度アルミナ製造設備の新設。	■ Completed production facilities for high-purity alumina used for lithium-ion secondary batteries in South Korea.
2015	■エネルギー・機能材料部門を新設。	■ Established the Energy & Functional Materials sector.
2016	■リチウムイオン二次電池用正極材を展開する田中化学 研究所を第三者割当増資引き受けで子会社化。	Acquired Tanaka Chemical Corporation, a Japanese manufacturer of cathode materials for lithium-ion secondary batteries, via third-party allotment.
	■韓国でリチウムイオン二次電池用セパレータ製造設備の稼働開始。同設備の生産能力増強を決定。	■ Began production of separators for lithium-ion secondary batteries at a plant in South Korea. Decided to increase the plant's production capacity.
2017	■ DPF (ディーゼル・パティキュレート・フィルター) 事業 からの撤退を決定。	■ Decided to exit the diesel particulate filter (DPF) business.
2018	■千葉工場にPES製造プラントが完成。	■ Constructed a new plant in the Chiba Works for the manufacture of polyethersulfone (PES).
2019	■田中化学研究所がリチウムイオン二次電池メーカー (ノースボルト社/スウェーデン)と正極材前駆体の 製造技術支援および販売契約を締結。	■Tanaka Chemical Corporation concluded a distribution agreement with Northvolt Ett AB (Sweden), a cell manufacturer, and agreed to provide technical support for precursors for cathode material.
2020	■次世代電池の1つである固体型電池の実用化に向け、 京都大学と材料および要素技術の共同開発を開始。	■ Started to jointly develop materials and component technologies with Kyoto University that can lead to the practical implementation of solid-type batteries, which have drawn attention as a next-generation rechargeable battery technology.
	■田中化学研究所がリチウムイオン二次電池用正極材の 製造設備を増強。	■Tanaka Chemical Corporation expanded production facilities for lithium-ion secondary battery cathode materials.
2021	■EPDM(エチレン・プロピレンゴム)事業からの撤退を 決定。	■ Decided to exit the ethylene-propylene-non-conjugated diene rubber (EPDM) business.
2022	■愛媛工場でLCP(液晶ポリマー)の生産能力増強を決定。	■ Decided to expand production capacity for LCP at the Ehime Works.
2023	■染料事業から撤退。	■ Exited the dyestuff business.

グローバル展開 // Globalization

財務ハイライト // Financial Highlights

売上収益とコア営業利益 Sales Revenue & Core Operating Income

■ 売上収益(左軸) Sales revenue (left axis) コア営業利益(右軸) Core operating income (right axis)

償却前コア営業利益と資本的支出 Core Operating Income before Depreciation & Capital Expenditure

■■ 償却前コア営業利益 Core operating income before depreciation 資本的支出 Capital expenditure

資産合計と資産収益率 **Total Assets & ROA**

■■ 資産合計(左軸) Total assets (left axis) → 資産収益率(右軸) ROA (right axis)

資産回転率 **Asset Turnover**

売上収益研究開発費比率 Ratio of R&D Expenses to Sales Revenue

2022~2024年度 中期経営計画 // Corporate Business Plan for FY2022 - FY2024

事業部門方針 Direction for the Business Sector

成長事業領域への集中投資・事業拡大 Concentrate investments and expand business in growth areas

電池部材 Batteries

- ・セパレータ:電池高容量化実現に向けた開発、 増強・拡販
- ・正極材: 焼成技術の確立と事業展開

スーパーエンプラ Super Engineering Plastics

・LCP:プラント増強による事業拡大 車載、5G高速通信コネクタ用途への 拡販

- · Separators: Development, capacity add and sales expansion in accordance with advances in battery capacity
- · Cathode materials: Establish calcination technology and commercialize
- · LCP: Expand business with plant capacity add Expand sales of connectors for applications in automotive and high-speed 5G telecommunications

低採算事業領域の方向性見極め Decide direction for low-profit businesses

次世代事業育成 Develop next-generation businesses

- 固体型電池・分離膜等の新規技術の開発推進
- · Advance development of new technologies such as solid state batteries, membrane-based separation, etc.

2024年度修正計画 FY2024 Revised Target 売上収益 Sales Revenue 4,100億円 ¥410.0 billion コア営業利益 **Core Operating Income** 220億円 ¥22.0 billion

各事業の詳細情報 // Detailed Information on Each Business

リチウムイオン二次電池 Lithium-ion Secondary Batteries

エコカーの市場トレンド Market Trends for Eco-friendly Cars

- EV(電気自動車 Electric vehicles) PHEV(ブラグインハイブリッド車 Plug-in hybrid electric vehicles) HEV(ハイブリッド車 Hybrid electric vehicles)

(注) HEVはマイクロHEV、HEVトラック・バスを含む。 EVはEVトラック・バスを含む。 (Note) 'HEV' includes micro HEV, and HEV trucks and buses. 'EV' includes EV trucks and buses.

(出所)富士経済「2022 電池関連市場実態総調査<上巻・電池セル市場編>」 (Source) Fuji Keizai Co., "General Survey of Battery-related Market Conditions – Battery Cells Market," 2022 edition

リチウムイオン二次電池の構造 Structure of a Lithium-ion Secondary Battery

リチウムイオン二次電池の市場トレンド Market Trends for Lithium-ion Secondary Batteries

■リチウムイオン二次電池 主要4部材の市場 Market for 4 Major Components and Materials for Lithium-ion Secondary Batteries

(出所)富士経済「2022 電池関連市場実態総調査<下巻·電池材料市場編>」 (Source) Fuji Keizai Co.,"General Survey of Battery-related Market Conditions – Battery Materials Market," 2022 edition ■リチウムイオン二次電池の市場予測 Market Forecast for Lithium-ion Secondary Batteries

(注) 車載用途: xEV用途、ESS用途: ESS、UPS、BTS用途、民生用途: 小型民生用途 (Note) Automotive use: EV/HEV/PHEV applications; Energy storage use: Uninterruptable power supplies and base transfer stations; Consumer use: Small-scale consumer applications

(出所)富士経済「2022 電池関連市場実態総調査<上巻・電池セル市場編>」 (Source) Fuji Keizai Co., "General Survey of Battery-related Market Conditions -Battery Cells Market," 2022 edition

セパレータ Battery Separators

セパレータの用途別市場規模推移 Separator Market Size by Use

(注) 車載用途: xEV用途、ESS用途: ESS、UPS、BTS用途、民生用途: 小型民生用途 (Note) Automotive use: EV/HEV/PHEV applications; Energy storage use: Uninterruptable power supplies and base transfer stations; Consumer use: Small-scale consumer applications

(出所)富士経済「2022 電池関連市場実態調査<下巻·電池材料市場編>」 (Source) Fuji Keizai Co., "General Survey of Battery-related Market Conditions – Battery Materials Market," 2022 edition

セパレータの種類 Separator Types

■当社事業 Our Business

アラミドコーティングセパレータの生産 Production of aramid-coated separators

セラミックコーティングセパレータに使用されるアルミナの他社への提供 Supplying alumina used in ceramic-coated separators to other companies

住友化学のセパレータ事業

Sumitomo Chemical's Separator Business

■ 当社セパレータの特性と電池への寄与 Characteristics of our separators and their contributions to batteries

アラミドコーティングセパレータの特性 (セラミックコーティングセパレータとの比較) Characteristics of our aramid-coated separators (Comparison with ceramic-coated separators)	電池への寄与 Contributions to batteries
高耐熱·薄膜塗工 Have a high heat-resistant & thin film coating	LiB高容量化 Higher-capacity lithium-ion secondary batteries
緻密空隙構造 Have a dense porous design	LiB長寿命化 Improving the lifespan of lithium-ion secondary batteries
軽量 Lightweight	EV軽量化 (電費向上) Reducing the weight of EVs (improving electrical consumption)

自動車用等の 高容量電池に最適 Best suited for high-capacity batteries for automotive and other applications

xEV向けに需要拡大中 Increasing demand for use in xEV

■ 当社グループのEV用LiB セパレータシェア Market share of the Group's lithium-ion secondary battery separators for use in EV

(注)容量換算ベース(トラック・バス除く) (Note) Capacity conversion basis (excluding trucks and buses) (出所) 住友化学推定 (Source) Sumitomo Chemical estimates

■セパレータの生産能力 Separator Production Capacity

	2022年度 FY2022	2023年度見込 FY2023 Estimate
日本	約1億m²	約1億m²
Japan	Approx. 100 million m²	Approx. 100 million m²
韓国	約3億m²	約4億m²
South Korea	Approx. 300 million m²	Approx. 400 million m²
計	約4億m²	約5億m²
Total	Approx. 400 million m²	Approx. 500 million m²

顧客需要に応じ増強を実施し、将来的には10億m2を目指す Increase production capacity in line with customer demands and aim for one billion m² in the future

正極材 Cathode Materials

住友化学グループの正極材事業

Sumitomo Chemical Group's Cathode Materials Business

■正極材の用途別市場規模推移 Cathode Material Market Size by Use

(注) 車載用途: xEV用途 ESS用途: ESS, UPS, BTS用途 民生用途: 小型民生用途 (Note) Automotive use: EV/HEV/PHEV applications; Energy storage use: Uninterruptable power supplies and base transfer stations; Consumer use: Small-scale consumer applications

(出所) 富士経済「2022 電池関連市場実態総調査<下巻・電池材料市場編>」 (Source) Fuji Keizai Co.,"General Survey of Battery-related Market Conditions – Battery Materials Market," 2022 edition ■事業拡大への取り組み Initiatives for Business Expansion

2016年10月	田中化学研究所 子会社化			
October 2016	Acquired Tanaka Chemical Corp.			
2018年10月	増強(第一期)	主原料溶解設備増強		
October 2018	Expansion (I)	Expanded main raw material melting facilities		
2019年7月 July 2019	増強(第二期)	製品生産・インフラ設備増強 +約1,200トン/月		
July 2015	Expansion (II)	Expanded production and infrastructure facilities +approx. 1,200 t/month		
2019年10月 October 2019	所が欧州電池メーカー・ノースボルト社 本に関する製造技術支援契約および販			
	Tanaka Chemical Corp. concluded a distribution agreement with Northvolt Ett AB, a cell manufacturer, and agreed to provide technical support for precursors for cathode materials.			
2020年10月 October 2020	増強(第三期)	工場建屋・製品生産設備増強 +約1,200トン/月		
Octobel 2020	Expansion (Ⅲ)	Expanded plant buildings and production facilities +approx. 1,200 t/month		

■田中化学研究所との共同開発 Joint Development with Tanaka Chemical Corp.

住友化学の強み Sumitomo Chemical's strengths

- 高生産性焼成プロセス開発
 - Development of highly productive calcination process
 - ▶ 愛媛工場にて量産実証設備を建設中、2023年度の稼働を予定 Mass production pilot facilities currently under construction at the Ehime Works, planned to begin operations in FY2023
- 分析・評価のノウハウ Experience with analysis and evaluation
 - ▶正極材の高出力化に貢献

Contributing to higher power output of cathode materials

▶ 分析・評価したデータを開発へ迅速にフィードバック Rapidly feeding data that has been analyzed and evaluated back into development

田中化学研究所の強み Tanaka Chemical's strengths

- 前駆体形態制御技術 Control technology for precursor morphology
- 量産化のノウハウ Experience with mass production
- 厳しい品質管理が求められる車載用途への対応力 Ability to support the strict quality management required for automotive applications
 - ▶正極材の高容量化に貢献

Contributing to higher capacity cathode materials

 顧客の電池製造プロセスに適合し、取り扱いやすい正極材の実現 Providing easy-to-handle cathode materials, adapted to customers' battery manufacturing processes

HEV・PHEV向け正極材: 粒子制御技術により、特徴ある粒子形状を実現し、高出力を可能としたEV向け正極材: 寿命、安全性のバランスをとった高容量タイプも開発中

Cathode materials for hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV):

Particle control technology has enabled the creation of characteristic particle shapes and high output

Cathode materials for electric vehicles (EV):

A high-capacity type with a balance between long life and safety is currently in development

■JERAとの共同開発 Joint Development with JERA

低環境負荷型リサイクル技術 (グリーンイノベーション基金事業)

Low environmental impact recycling technology (Green Innovation Fund Project)

▶ 正極材の効率的な回収・再利用、CO₂排出量の低減、およびコスト削減に貢献 Contributing to efficient collection and reuse of cathode materials and reduction of CO₂ emissions and costs

高純度アルミナ High-purity Alumina

住友化学の高純度アルミナ事業

Sumitomo Chemical's High-purity Alumina Business

■住友化学の高純度アルミナの製造法 (アルコキシド法:アルコールとアルミニウムを原料とする量産に適した製造法) Sumitomo Chemical's production process for high-purity alumina (Alkoxide Method: Production method suitable for mass production using alcohol and aluminum as raw materials)

■用途 Applications

illumination

分野 Field	用途 Applications		
エネルギー、自動車 Energy, automotive	リチウムイオン二次電池用部材 Lithium-ion secondary battery materials		主な用途での優位性 Advantages in main applications
	酸素センサー Oxygen sensors		● 高純度 - High purity
情報通信	半導体製造装置用セラミックス Ceramics for semiconductor manufacturing equipment		● シャープな粒度分布 Narrow particle size distribution
IT	精密研磨剤、フィラー、基板、溶射材 Precision polishing, fillers, substrates, thermal spray materials		● 均一な粒子形状 Uniform particle size
表示材、照明 Display materials,	単結晶用原料、蛍光体用原料、HIDランプ Single-crystal applications, phosphor applications,		-

スペシャリティケミカルズ Specialty Chemicals

high-intensity discharge lamp applications

	特長 Advantages	主用途 Main applications
レゾルシン Resorcinol	 ・当社独自製法を用い世界有数の規模で事業展開 ・各種ファインケミカル原料として幅広く使用 ・Strong global business presence with Sumitomo Chemical's proprietary manufacturing process ・Widely used as a key raw material for various fine chemicals in a broad range of applications 	 タイヤ用接着剤、紫外線吸収剤、難燃剤 Adhesives for tires, ultraviolet absorbers, flame-retardants
レゾルシン樹脂	・適切な粘度を有し取り扱いが容易	・タイヤコード用接着剤
Resorcinol resin	• Proper viscosity makes it easy to handle	Adhesives for tire cord
高分子用安定剤 Polymer stabilizers	 ・当社独自開発の加工安定剤、酸化防止剤 ・各種プラスチックおよびゴムの耐久性等の品質向上 ・少量添加で効果発現、ノニルフェノールフリー、食品包装用途に強み ・Proprietary additive stabilizers and oxidation prevention additives developed by Sumitomo Chemical ・Improves qualities such as durability for a variety of plastics and elastics ・Shows effects in small amounts, nonylphenol-free, excellent for food packaging applications 	• 食品包装、自動車部材、衛生材料 • Food packaging, automobile components, sanitation materials
ポリオレフィン系 水性エマルション Water-based polyolefin emulsion	 接着困難な基材であるポリプロピレン(PP)に対して強力に接着 極性樹脂や金属にも接着するため、異種材料の接着が可能 溶剤や塩素を含まない環境配慮型の水性エマルション Excellent adhesion to polypropylene (PP) Enabling multi dissimilar material bonding through excellent adhesive performance for polar resins and metals, etc. Eco-friendly water-based emulsion without solvent and chlorine 	 ・塗装ブライマー ・自動車部材用接着剤 ・インクバインダー ・Paint primer ・Adhesive for automotive parts ・Ink binder

スーパーエンジニアリングプラスチックス(SEP) Super Engineering Plastics (SEP)

SEPの概要

Overview of SEP

	特長 Advantages	主用途 Main applications	アクションプラン Action plan
液晶ポリマー	高耐熱性、高流動性、寸法安定性	電子部品	・高周波対応部材(5G通信用含む)の開発、拡販・車載コネクタ用途の拡販・自動車部品用途の新規開発、拡販
Liquid crystalline polymer (LCP)	High heat resistance, High fluidity, Dimensional stability	Electronic components	 Development and sales for high frequency-capable materials (including 5G applications) Expand sales for vehicle connector applications Development and sales for new automobile component applications
.0	高耐熱性、高耐クリープ性*、 寸法安定性、難燃性、高耐水性	炭素繊維複合材料(航空機用) 高機能膜(人工透析膜用)	自動車部品、高機能膜、航空機等での開発、拡販
ポリエーテルサルホン Polyethersulfone (PES)	High heat resistance, High creep resistance*, Dimensional stability, Flame retardance, High resistance to water	Carbon fiber composite materials (for use in aircraft) High-performance membranes (for dialysis use)	Development and sales for automobile component, high-performance membrane, and aircraft component applications

^{*} 高温環境での荷重下においても材料の変形が起こりにくい性質 A property that makes the material resist deformation even when under a heavy load in a high-temperature environment

旺盛な需要に応じたLCPの生産体制整備

Prepare Production Regime of LCP to Support Strong Demand

■生産能力増強の意思決定 Decided to Expand Production Capacity

現在 Today			
約9,000t			
About 9,000 t			

- (注) 樹脂ベース。グレード構成により増減 (Note) Based on resin. Varies depending on grade mix.
- 車載、5G高速通信コネクタ用途への拡販 Expand sales of connectors for applications in automotive and high-speed 5G telecommunications
- 自社コンパウンド機能拡充 Expand functionality of in-house compounds
- さらなる設備増強を検討 Consider further capacity expansion

LCPの5G対応 Make LCP Compatible with 5G

■高速通信分野 樹脂材料の市場推移
Changes in the Resin Materials Market in
the High-speed Communication Sector

- 成形品(コネクタ等) Shaped products (Connectors, etc.)
- フィルム(回路基板等) Film (Circuit boards, etc.)

(出所) 住友化学推定 (Source) Sumitomo Chemical estimates

■5Gで求められる高周波材料の特性 Characteristics of High-frequency Materials Required by 5G

低誘電率 Low permittivity 低誘電正接 Low dielectric loss tangent

▮▶│

LCPの特性と合致

The characteristics of LCP match well with these requirements.

■当社保有技術 Our Proprietary Technology

低吸水 Low water absorption

- 分子構造設計、合成技術
 Molecular structure design, synthesis technology
- 可溶性LCPの量産技術 Mass production technology for soluble LCP
- コンパウンド設計、量産技術
 Compound design, mass production technology
- 材料特性を活かした加工支援技術 Machining support technology utilizing material properties
- ■高速通信関連の主な用途 Major Applications in High-speed Communications
- サーバー用高速通信コネクタ High-speed telecommunication connectors for servers
- 基地局アンテナ用回路基板 Circuit boards for base station antennas
- スマートフォン用回路基板 (FPC、PCB)
 Circuit boards for smartphones (flexible printed circuits, printed circuit boards)

基地局アンテナ用回路基板 Circuit boards for base station antennas

基地局アンテナ(イメージ) Antennas for base stations (concept)

車載用コネクタの需要拡大に伴うLCPの対応

LCP Response to Growing Demand for Vehicle Connectors

■車載用コネクタの市場推移 Trends in the Vehicle Connector Market

(出所) 住友化学推定 (Source) Sumitomo Chemical estimates

EV需要の拡大や電子制御化の進展により、 車載用コネクタの需要が拡大し、LCP化ニーズが増大

As vehicle connector demand expands due to growing demand for electric vehicles and the ongoing shift toward electronic controls, there will be a growing need to shift to LCP

耐熱性や寸法安定性、精密成形性などの当社の強みを活かして拡販を目指す

Sumitomo Chemical aims to expand sales using our strengths, including heat resistance, dimensional stability, and precise shaping

軽量化に加えて、自動車部材に要求される機能

Functionality Required of Automobile Components, in Addition to Reducing Weight

自動車部材 Automotive components		以下の機能はSEPへ代替することにより向上 The following functions are enhanced by switching to SEP	従来材 Conventional materials	対応部材 Compatible components
	パワーユニット Power units	耐熱性、制振性 Heat resistance, vibration damping	● セラミックス、アルミ Ceramics, aluminum	PES/LCP
	オイル循環パイプ Oil circulation pipes	燃費の向上 Improvement of fuel efficiency	_	• LCP
	オイルコントロールバルブ*2 Oil control valves*2	レスポンス、生産性 (射出成形) Response, productivity (injection molding) • アルミ Aluminum		• PES
パワートレイン* ¹ Powertrain* ¹	ギア Gears	耐熱性、静音性 Heat resistance, quietness	金属、汎用エンプラ Metal, general-purpose engineering plastic	• PES
	モーターインシュレーター Motor insulators	耐熱性、絶縁性、生産性 (射出成形) Heat resistance, insulation, productivity (injection molding)	● アラミド紙、熱硬化樹脂、汎用エンプラ Aramid paper, thermosetting resin, general-purpose engineering plastic	• PES/LCP
	シールリング*3 Seal rings*3	生産性(射出成形) Productivity (Injection molding)	●鋼、特殊鋼 Steel, special steel	• PEEK
ボディ、パネル	Body, Panels	薄肉強度·剛性、静音性 Thin-wall strength, rigidity, quietness	●鋼、アルミ Steel, aluminum	PES/LCP
シャーシー、構造部材	Chassis, Structural members	比強度 Relative strength	●鋼、特殊鋼 Steel, special steel	PES/LCP

- *1 エンジンで作られた回転力を駆動輸へ伝える役割を担う装置 A device that is responsible for transmitting the rotational power produced by the engine to the drive wheels
- エンジン吸排気機構や変速機をコントロールする油圧回路に用いるパルブ Valves used in hydraulic circuits for controlling engine intake and exhaust mechanisms and the transmission *3 変速機などの油圧回路内に組付けられたオイル密封部品 An oil seal assembly within a hydraulic circuit such as a transmission

CO2分離膜 CO2 Separation Membranes

溶解度および拡散速度の差を利用して○○2を分離する膜(グリーンイノベーション基金事業)

CO₂ separation membranes that utilize the difference between its solubility and its diffusion speed (Green Innovation Fund Project)

■膜によるCO₂分離のイメージ

Diagram of CO₂ separation with membrane

● CO₂(二酸化炭素) ● N₂(窒素)

- ■当社CO₂分離膜の特長 Features of Our CO₂ Separation Membranes
- C○₂透過性能が極めて高い Extremely high CO2 transmission performance
- CO₂/N₂分離に好適 Well suited for CO₂/N₂ separation
- ■想定している主な用途 Vision for Major Applications
- 火力発電所や各種工場、廃棄物焼却設備などで発生する 燃焼排ガスからのCO2分離 CO₂ separation from combustion exhaust gases generated by thermal power stations, various types of plants and factories, waste incinerators, etc.

カーボンニュートラル社会実現への貢献 Contributing to the creation of a carbon neutral society