|技|術|紹|介|

有機ELデバイス製造におけるプロセス汚染評価の重要性 ー真空チャンバー由来の不純物評価ー

はじめに

有機ELデバイス製品のさらなる普及のためには、デ バイスの長寿命化が必須である。デバイスの長寿命化 を妨げる因子の一つとして、デバイス内部に混入した 不純物による影響が知られている。中でも、ITO基板 表面の有機不純物や発光素子に使われる有機材料中の 微量のハロゲン化合物など、デバイス材料に由来する 不純物の影響がよく知られており^{1),2)}、材料の不純物 評価が重要とされている。さらに、不純物はデバイス の製造プロセスで混入することがある。最もよく知ら れている成分としては水が挙げられ、過去の研究では、 真空蒸着プロセスにおいて、真空チャンバー内に残留 している水が正孔輸送層と発光層の界面に混入して有 機膜と反応することにより、デバイス寿命を著しく低 下させることが示されている³⁾。

水以外にもデバイス製造時には様々な不純物が混入 する可能性がある。例えば、真空チャンバーのステン レス部分を加工した際に使用したオイルは、その後の 洗浄工程を経てもチャンバー内に残留し、真空中で放 出されることが知られている⁴⁾。また、チャンバー内 部にはOリングや絶縁用の樹脂などが用いられること があるが、一般的に樹脂材料からは内部に溶解してい る気体の拡散・脱離および材料そのものからの未反応 物質(可塑剤、硬化剤など)や分解生成物の放出があ ると言われている⁵⁾。これらの物質は水と同様にデバ イス中に混入する可能性が考えられるものの、寿命へ の影響はこれまでにほとんど報告されてこなかった。

本稿では、当社が九州大学の研究グループと共に明 らかにした、デバイスの寿命に影響を及ぼす真空チャ ンバー由来の有機不純物の評価事例⁶⁰を元に、プロセ ス汚染評価の重要性について紹介する。

* 現所属:愛媛ラボラトリー

株式会社住化分析センター技術開発センター末 包 高 史*今 西 克 也

プロセス汚染評価事例

- 1. デバイスに混入する不純物の模擬評価
- (1) 真空チャンバー内の有機不純物

チャンバー内にシリコン基板を一定時間暴露し、基 板上に付着した不純物を測定することにより、デバイ ス中に混入する可能性のある真空チャンバー由来の不 純物を模擬的に評価できる。不純物は有機物、金属、 イオンに大別できるが、ここでは有機物に着目した評 価事例を紹介する。

Table 1 には、室温状態で真空引きのみ行ったチャン バー内に、0.5 h(時間)および15 hと、暴露時間を変 えて基板を暴露させたときの有機不純物の評価結果を 示す。基板上の有機不純物は、溶媒で回収した後に液 体クロマトグラフーフーリエ変換型質量分析計(LC-FTMS)により測定した。いずれの試料からも多数の 有機不純物が検出され、暴露時間が長くなるにした がって検出数は増加した。また、両試料から検出され た12化合物について化合物ごとの検出強度比を比較す

Table 1Impurities on silicon wafers stored in the
vacuum chamber

Compound No.	Ratio of ion count	
	0.5 h stored	15 h stored
1	1.0	140
2	1.0	1,900
3	1.0	53,000
4	1.0	100
5	1.0	2.3
6	1.0	8.2
7	1.0	1.1
8	1.0	450
9	1.0	16
10	1.0	1.7
11	1.0	14
12	1.0	10
13	Detected	Not Detected
$14 \sim 48$	Not Detected	Detected

ると、12化合物すべてが15h暴露したときに高い値を 示した。本結果は、チャンバー内には多数の有機不純 物が浮遊しており、それらがデバイス作製時間に応じ てデバイス中に混入する恐れがあることを示している。

(2) 有機不純物と水が寿命に及ぼす影響

デバイス中には、有機不純物に加えてチャンバー内 に残留している微量の水が混入することは明らかであ り、水が寿命に影響を及ぼすことは前述のとおりよく 知られている。そのため、有機不純物が寿命に及ぼす 影響について、水の影響との切り分け評価を行った。

有機不純物は、チャンバー内部の壁や部材などに付 着した化合物が多く含まれると推測される。そこでチャ ンバー内部の洗浄によりそれらの除去を図った際の、デ バイスの寿命、チャンバー内の有機不純物量、および 水の量の変化を調査した。洗浄作業では、チャンバー 内部を大気開放後にアセトンで拭き取った後に乾拭き し、防着板を洗浄した清浄品と交換した。その後、 チャンバー内部に残存するアセトンや水などの高揮発 性の成分を可能な限り除去するために、内部を高真空 排気した後に蒸発源を最高温度で加熱した。有機不純 物量は、前項と同様の基板暴露試料について接触角お よびLC-FTMSを用いて評価し、水の量はチャンバーに 接続した四重極型質量分析計を用いて水分圧にて評価 した。デバイスの寿命はFig.1に示す低分子の有機材 料で構成された有機ELデバイスについて、1000 cd/m² 開始で発光強度が初期特性の90%に低下するまでの時 間(LT90)を評価した。このとき、デバイスの作製時 間の差による寿命への影響を排除するために、各材料 の蒸着レート調整時間および成膜時間はすべてのバッ チで統一した。また、材料はすべて同一のロットを使 用した。

Fig.2に、チャンバー洗浄前(Before)、洗浄後に一 晩高真空排気後(Cleaning I)、さらに2日間高真空排 気後(Cleaning II)におけるデバイスの寿命、水の分 圧、接触角の結果を示す。チャンバー内部の洗浄によ り、水の分圧が上昇したにもかかわらず、寿命は大幅 に改善した。その後、水の分圧は洗浄前とほぼ同等ま で減少したが、寿命に大きな変化は見られなかった。一 方で、チャンバー内に30分間設置したITO 基板上の接

Al (100 nm)		
LiF (0.8nm)		
Bpy-TP2 (40 nm)	: 2,7-Bis(2,2'-bipyridine-5-yl)triphenylene	
T2T (10 nm)	: 2,4,6-Tris(biphenyl-3-yl)-1,3,5-triazine	
15% 4CzIPN / mCBP (30 nm)	$: 3, 3- Di (9H-carbazol-9-yl) biphenyl \ / \ (4s, 6s)-2, 4, 5, 6- Tetra (9H-carbazol-9-yl) is ophthalonitrile$	
Tris-PCz (30 nm)	: 9,9',9''-Triphenyl-9H,9'H,9''H-3,3': 6',3''-tercarbazole	
HAT-CN(10 nm)	: 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile	
ITO Substrate		
Fig. 1 OLED (Organic Light Emitting Diode) architecture		

Belore Cleaning Cleaning

Fig. 2 Effect of cleaning on lifetime and vacuum environment

触角は、洗浄後に大幅に減少し、真空引きを続けた後 も同等の値を示した。また、BeforeおよびCleaning I のタイミングで15h暴露した試料のLC-FTMS評価で は、重複する78物質を含む約80物質がそれぞれで検出 されたが、Cleaning Iでは55物質のイオン強度が減少 し、検出化合物の合計イオン強度は15%以上も減少し た。これらの結果から、洗浄後の寿命の向上は、有機 不純物の低減効果によるものと考えられ、換言すると、 寿命には有機不純物が大きく影響している可能性があ ると言える。なお、過去に水の分圧3×10-7 Paの超高真 空領域でデバイスを作製する際、水の入射量を4桁程度 増加させると寿命が低下することが報告されている³⁾。 一方で、本実験における水の分圧は約4倍程度の変化 にとどまったため、水による寿命への影響は小さかっ たものと推測される。

(3) 有機不純物の詳細解析

前項のチャンバー内の洗浄実験にて検出された有機 不純物の詳細について、LC-FTMSの精密質量測定結果 を元に解析を行った。

Fig. 3にはチャンバー内の洗浄前後のいずれかで検 出された有機不純物について、質量数100ごとの検出化 合物数のヒストグラムおよび累積相対度数を示す。驚 くべきことに、チャンバー内は蒸発源を加熱せず室温 に保ったにもかかわらず、高揮発性と予想される低分 子量の化合物のみならず、比較的高分子量の化合物が 浮遊していることがわかる。

Fig.4に、精密質量の組成演算により有機不純物の 分子式を推定し、その結果から構造を推定した一例を

示す。直前のデバイス作製で使用した化合物(T2T) や過去に使用した化合物 (TPBi: 2.2',2"-(1.3.5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))、さらには その分解物と推測される化合物など、チャンバー内の 残留が疑われる発光素子材料由来の化合物が推定され た。さらに興味深いことに、アジピン酸化合物やフタ ル酸化合物などの発光素子材料としては使用されない と思われる化合物も検出された。これらの化合物は一 般的に樹脂の添加剤として使用される。チャンバー内 には絶縁チューブ、コネクタ、Oリングなどがチャン バーの構成部材として使用されていることから、それ らが放出源となっている可能性がある。

2. 発光層界面に混入した有機不純物が寿命に及ぼす 影響

前述の現象が実際のデバイスにおいても生じている ことを検証するために、デバイスと同時に有機不純物

Fig. 4 Structures of some of the materials that could be tentatively assigned to LC-FTMS results

評価用の試料を作製した。Fig.5に作製の模式図を示 す。蒸着時にはシリコン基板の下側にマスクを設け (Fig.5(a))、蒸着レート調整時にはマスクを外すこと により(Fig.5(b))、レート調整時、つまり有機膜界 面に混入すると考えられる有機不純物のみをシリコン 基板に付着させた。このとき、文献や著者らの知見を 参考にして、デバイス性能への影響が大きいと考えら れる発光層前後のレート調整時間を変化させることに より、チャンバー内の暴露時間が異なる複数の試料を 準備した。デバイスはFig.1に示す構造で作製し、前 項とは異なる材料ロットで統一した。

Fig. 6に、デバイス作製時間に対するデバイス寿命 およびLC-FTMSを用いた有機不純物量の評価結果を 示す。デバイス作製時間、すなわち発光層の蒸着前後 の待機時間が長くなるにしたがって寿命は低下し、有 機不純物量が増加する傾向が明確に認められた。本結 果は、デバイス作製中に発光層界面に混入した有機不 純物が、寿命に大きく影響していることを示唆してい る。検出された化合物を前節と同様に解析すると、模

Fig. 6 Effect of fabrication time on lifetime and vacuum environment

擬評価で検出された化合物と同様の化合物に加えて、 酸素を多数含む化合物(C22H44O5、C22H42O5)、酸素 とりんを含む化合物(C11H17OP)、酸素とハロゲンを 含む化合物(C10H20ONCl)など、デバイス性能への 悪影響が懸念される化合物が多数含まれることが判明 した。

おわりに

本稿では真空チャンバー由来の有機不純物の評価事 例を元に、それらがデバイス作製時にデバイス内に混 入することで、寿命低下を引き起こすことを説明した。 製造プロセスに由来する不純物の種類や混入量は、装 置構成によって異なるばかりでなく、たとえ同一装置 であっても使用環境により大きく変化すると予想され る。デバイス材料の特性を最大限に発揮させ、安定的 かつ低コストに高性能なデバイスの製造を継続してい くためには、材料の不純物管理と同様に、デバイス製 造時のプロセス汚染管理を日々注意深く行う必要があ る。これまで当社が蓄積してきた評価技術が、有機EL を始めとする有機エレクトロニクス分野のさらなる発 展の一助となれば幸いである。

謝辞

本稿の評価事例は、九州大学最先端有機光エレクト ロニクス研究センター (OPERA) 安達 千波矢センター 長、公益財団法人福岡県産業・科学技術振興財団 有機 光エレクトロニクス実用化開発センター (i³-OPERA) 藤本 弘研究室長 (九州大学 客員准教授)、公益財団 法人九州先端科学技術研究所 (ISIT) 八尋 正幸研究 室長 (九州大学 客員教授) の研究グループとの共同 研究により得られた成果です。改めて厚く御礼申し上 げます。

引用文献

- 1) Y. Fukushi, H. Kominami, Y. Nakanishi and Y. Hatanaka, *Appl. Surf. Sci.*, **244**, 537 (2005).
- H. Fujimoto, M. Yahiro, S. Yukiwaki, K. Kusuhara, N. Nakamura, T. Suekane, H. Wei, K. Imanishi, K. Inada and C. Adachi, *Appl. Phys. Lett.*, **109**, 243302 (2016).
- H. Yamamoto, C. Adachi, M. S. Weaver and J. J. Brown, *Appl. Phys. Lett.*, **100**, 183306 (2012).
- 4) R. S. Barton and R. P. Govier, Vacuum, 20, 1 (1970).
- 5) R. J. Elsey, Vacuum, 25, 347 (1975).
- H. Fujimoto, T. Suekane, K. Imanishi, S. Yukiwaki, H. Wei, K. Nagayoshi, M. Yahiro and C. Adachi, *Sci. Rep.*, 6, 38482 (2016).