GaN単結県 其板の 開発	株式会社サイオクス				
Uan 半 加		藤	倉	序	章
		井	上	敏	寿
		北	村	寿	朗
		今	野	泰-	一郎
		鈴	木	貴	征
		藤	本	哲	爾
7 エネルギーをみんなに そしてクリーンに 8 働きがいら 日本規制のたねる 日1 住み規制のたねる 日2 大阪変間に 日2 大阪変間に 日2 大阪変間に 日2 大阪変間に 日2 大阪変間に 日2 大阪変間に		吉	田	丈	洋
		柴	田	真依	左知
		齊	藤	俊	也
Development of GaN Single-Crystal Substrates	SCIOCS Co., Ltd.				
		Hajime Fuлкura Toshihisa Inoue Toshio Kıtamura			
		Tai	chiro	Konn	0
		Tak	ayuki	i Suzu	JKI
		Tetsuji Fuлмото			

In this paper, we first review fabrication technologies for GaN single-crystal wafers which have been reported to date. Then, our original fabrication technique for GaN single-crystal wafers which is called void-assisted separation (VAS) is introduced. Our recent progresses in GaN wafer fabrication technology for next-generation devices, such as further improvement of GaN crystal quality as well as increasing wafer size, are also explained in detail.

はじめに

化合物半導体はSiにはない優れた発光特性と、組成 により発光波長を制御可能という特徴があるため、 発光ダイオード(LED)や半導体レーザ(LD)等の 光デバイスとして、ディスプレイのバックライトや 照明、プロジェクタの光源、CDやDVDの読取・記録 用の光ピックアップに用いられている。またさらに は、その優れた電気特性から、電子デバイスとして も携帯電話・スマートフォンで用いられる高周波増 幅器や、携帯電話基地局での増幅デバイスとしても 用いられ、現在のIT社会を支える必要不可欠な基幹 材料となっている。

III-V族化合物半導体は、当初はGaAsやInP等の結晶 基板と、その上に成長可能な材料、すなわちIII族とし てはGa、In、Alを、V族としてはAs、PあるいはSbを 含む材料を中心に開発が行われ、赤外~黄緑色までの 波長領域のLEDおよびLD、そして高周波電子デバイ スが実現されてきた。当社(株式会社サイオクス)で も、その前身の日立電線株式会社の時代から、主要な III-V族化合物半導体であるGaAsのバルク結晶成長に 取り組み、さらにその上に光、電子デバイスの構造を 作りこむエピタキシャル成長技術を開発し、下地とな るGaAs結晶基板からGaAs系のデバイス用エピウエハ までを製品化し、IT社会の発展に貢献してきた。

一方、1980年代に、2014年にノーベル物理学賞を 受賞した赤崎・天野・中村らが、窒化ガリウム (GaN)の開発に成功し、それまで実現されていなか った青紫~緑色領域で発光するLEDやLDの実現に道 が開かれた^{1)-4)。}先に述べたように、従来のGaAsや InP等からなるデバイスは、それぞれGaAsおよびInP という同種基板の上にデバイス構造をエピタキシャ ル成長して形成されていた。これは、これらの半導 体が高温で融液を形成でき、その凝固過程でバルク

Takehiro Yoshida Masatomo Shibata Toshiya Saito

結晶を得られたため、単結晶のGaAsあるいはInP基板 が実現できていたためである。これに対してGaN系 では、窒素の高い平衡分圧のため、融液からのイン ゴットの成長は事実上不可能であった。このため、 GaN系のデバイスは、サファイアやSiC等の異種基板 上に薄膜結晶を成長する技術により実用化が始まっ た^{1),2)}。この場合、基板と成長層の格子定数や熱膨張 係数の違いで、GaN層中には10⁸-10⁹/cm²台の高密 度の貫通転位が存在していた。従来の半導体では、 このような高い転位密度はデバイス動作に致命的な 影響を与えたが、GaN系光デバイスでは幸いなこと にキャリア局在化の効果が強いInGaNという特異な 活性層材料が利用できたため、電流密度の低いLED では転位の影響は深刻なものとはならず、白色・青 色・緑色LEDが実用化された³⁾。しかし、電流密度が 桁違いに大きいLDでは、素子寿命が転位密度に強く 依存するため、より低転位なGaN結晶の実現が望ま れ、1990年代後半から様々な手法を用いたGaN単結 晶基板の製造手法が開発され始めた^{5),6)}。

当社でも2001年にサファイア上へ微細なボイドを 介してGaN膜を形成し、成長後にボイド部でGaN膜 をサファイアから分離してGaN結晶のみで自立した 基板を得る、独自のボイド形成剥離法(Void-Assisted-Separation: VAS法)を開発し、GaN単結晶基板を 実現した⁷⁾⁻¹²⁾。この手法は、後述のように、ウエハ 全面を均一に低い貫通転位密度(Threading dislocation density: TDD)(10⁶/cm²台前半)にできるという、 それまでに提案された手法にはない利点を有するた め、広く使われるようになり、現在では青色LDをは じめとする様々な用途に適用されている。

更にGaN系材料は、その高い絶縁破壊電界および移 動度から、パワーデバイス用の材料としても当初から 期待されていた。この場合も、バンドギャップが狭い InGaNは使えず、また高耐圧・大電流動作が求められ るため、高品質なGaN単結晶基板を用いるメリットは

Fig. 1 Devices using free-standing GaN substrates as starting substrates (a) Laser diode and (b) Vertical metal-insulator-semiconductor transistor 大きく、当社をはじめとした各社から、高品質なGaN 単結晶基板が安定に供給されるようになり、その開発 が加速しつつある^{13),14)}。Fig. 1にGaN単結晶基板を用 いて実現されるデバイスのうち代表的な物として、青 色LDと縦型のパワーデバイスの概略図を示す。

以下では、これまでに提案された各種のGaN単結 晶基板製造法とそのメリット・デメリットを概観し、 その後、我々の開発したVAS法によるGaN自立基板に ついて、製作プロセス、高品質化の取り組み、大口 径化への取り組みについて解説する。

GaN単結晶基板の各種製造方法

ここでは、これまでに様々なメーカ、研究機関から 提案されたGaN単結晶基板の製造方法を、GaN成長時 の結晶形態や転位低減機構の違いに着目した「形成手 法」と、成長に使用する原料や結晶析出機構の違いに 着目した「成長法」の2つの観点から説明する¹⁵⁾。

1. GaN単結晶基板の形成手法

Fig. 2に、これまでに提案されたGaN結晶の形成手 法をまとめた¹⁵⁾。形成手法は、まず自然核発生した微 細な結晶を種結晶とする場合と、異種基板上のGaN薄 膜(テンプレートと呼ぶ)を種結晶とする場合に大き く分けられる。前者は自然発生した高品質な結晶核を 成長により大きくする手法であり、非常に高品質な結 晶が得られるものの、実用的なサイズにまで結晶サイ ズを拡大するのは極めて困難である。このため、現在 はほとんどの場合で後者のテンプレート方式が用いら れている。テンプレート方式は、異種基板を剥離する 場合と剥離しない場合に分けられる。異種基板を剥離 しない場合には、先に述べたように異種基板/GaN層 間に応力が発生し、GaN層を厚く(>20µm)成長す ると結晶が割れるリスクが増大するので、成長厚が限 られ、充分に低転位な結晶を実現するのは困難であ る。一方、異種基板を剥離してGaN単結晶を自立させ ると、mm単位の厚さのGaN結晶の成長が可能とな り、10⁶/cm²台以下の低転位化が可能となる。現在各 種のデバイスに用いられているGaN単結晶基板は、全 てこの最後のカテゴリー(異種基板・剥離)に属して いる。このカテゴリーは更に、成長の比較的初期から 表面が平坦な状態のまま成長する「平坦成長| 7)-12)、 下地の表面をGaNが付着しにくい絶縁体マスク等で部 分的に覆うなどして成長初期に意図的に島状成長を導 入するいわゆるELO法 (Epitaxial Lateral Overgrowth: ELO) を行い、その後平坦成長に移行する「ELO+平 坦成長」⁵、更にELO法で形成される微結晶面(ファ セット)を維持した状態でGaN層を厚く成長する 「ELO+ファセット成長」⁶に分けられる。

Fig. 2 Summary of strategies for bulk GaN crystal fabrication and their characteristics¹⁵⁾

平坦成長とELO法での成長の様子を、転位減少の様 子とともにFig. 3に模式的に示す¹⁵⁾。異種基板上の GaN成長の初期には高密度の転位が発生するが、平坦 成長では成長中にこれらの転位同士がランダムウオー ク的に出会い減少する。なお、一般的なGaNの結晶成 長の場合には、基板表面と平行な面がGaN結晶の+C 面と呼ばれる結晶面となる。+C面は表面がGaで終端 された化学的に安定な面であり、基板との界面で発生 した転位はこの+C面に垂直方向に結晶中を伝播しや すい性質がある。全ての転位がほぼ同じ方向に(平行 に) 伝播するため、平坦成長では転位の減少の仕方は 比較的ゆっくりであり、転位密度はGaN層厚に反比例 して減少する10)-12)。一方ELO法では、ファセット面 と出合った転位はその伝播方向が変化し、この結果、 転位同士が出合う確率を平坦成長の場合よりも高める ことができる。このため、ELO法では低転位領域の転 位は平坦成長よりも急速に減少する。ただし、絶縁体 マスク上にデバイス動作を阻害する転位が高密度で集

Fig. 3 Main mechanism of dislocation reduction in GaN crystal growth for (a) layered growth and (b) ELO and faceted growth¹⁵⁾

中した領域や、貫通穴、インバージョンドメイン(極 性反転領域(Inversion Domain: ID)、Ga終端面ではな く、N終端面(一C面と呼ばれる)が発生した領域) やそれに付随したピットや高濃度にドープされた領域 等、Fig. 4に示すようなµm~mmサイズの欠陥(以後 これらをまとめて、マクロ欠陥と言う)が発生しやす いという欠点がある⁶。

これらのマクロ欠陥は、平坦成長ではELO法と比較 すると発生しにくいものの、後述する様にGaN層の厚 膜化が比較的難しく、低転位化および低オフ角分布化 が困難という欠点がある。異種基板上での平坦成長に よるGaN基板製作方法の例をFig.5に示す。ここでは、 種基板となる異種基板上のGaN結晶内にボイドを形成 し、その上にGaN層を平坦成長することで、ボイド部 からGaN結晶を剥離する方法を示している。この方法 では、種基板のボイドが微細な場合には、Fig.5に示 すように成長初期にµmサイズ以下の微細なGaNの結晶 核が形成される(この図では、分かりやすいように核 を大きく書いている)。このようなGaNの結晶核が結合 する際にはC面に反りが発生するため、GaN結晶を研 磨して製作したウエハ表面の結晶方位(C面からのず れ、オフ角と呼ぶ) に分布が生じる。デバイス層の成 長の際には、不純物取込や混晶組成がオフ角依存性を

Fig. 5 An example of GaN bulk crystal fabrication sequence by thick layer growth on seed crystal with nano-voids Copyright (2018) The Japan Society of Applied Physics¹²

持つ場合が多いので、基板のオフ角分布はウエハ内で デバイス特性が変動する要因となる^{16),17)}。このため、 オフ角分布は小さい方が望ましい。平坦化後のGaN結 晶を厚くすると、Fig. 5 (e) (f)に示すようにC面の反り は減少するが、この際の応力の増大によりGaN結晶に クラック(Fig. 4参照)が発生しやすく、結晶が割れ るリスクも増大する。

成長初期にELO法を用いると、上述のマクロ欠陥 の存在によりC面の反りとそれに伴う応力が緩和さ れ、平坦成長の場合よりGaN層を厚く成長でき、 ELO法自体の低転位化機構と相まって、比較的容易 に10⁵/cm²台以下の低転位化が可能となる。ただし、 一度発生したマクロ欠陥を成長により無くすのは困 難で、またGaN結晶の表面を研磨等により物理的に 平坦化してもマクロ欠陥は無くならないため、実際 のデバイスに応用する際には注意が必要である。

2. GaN単結晶基板の成長法

次に、GaN結晶の「成長法」について説明する。代 表的なものとしては、気相法である有機金属気相成長

(MOVPE) 法やハイドライド気相成長(HVPE) 法、 あるいは溶液法(GaAsやInPと異なり、融液ではな い)として安熱合成法やNaフラックス法等が挙げら れる。これらの成長法の特徴をTable 1にまとめる。 MOVPE法は、LD開発初期にはFig. 2の基板剥離を伴 わない手法に広く用いられた4)。しかし成長速度が 高々数µm/h程度と遅いため、mm厚の成長が必要な GaN単結晶基板の成長法としては現在は使われていな い。その代わり、MOVPE法は厚さの制御性が高いと ころから、現在でもGaN系薄膜の成長法の主流となっ ている。現在量産されているGaN単結晶基板は、その ほとんどがHVPE法により製造されている^{6)-12),18),19)}。 これは、HVPE法は、成長速度が100µm/h以上と非常 に早く、結晶の純度が比較的高く、更にはELO法や 平坦成長の切り替えなど、GaN単結晶基板成長に必 要な成長条件の制御が容易なためである。排気系に 析出する塩化物のため、一度に成長可能なGaN結晶 の量が制限される点が欠点として挙げられる。

一方、溶液中でGaN結晶を析出させる安熱合成法 やNaフラックス法^{20),21)}では、HVPE法のような排気 の制限が無いため、数日~数か月にわたる極めて長 時間の成長により、長尺結晶を実現できる可能性が ある。これまでに、数mm厚の成長において、自発 ELO法的な成長により極めて低転位のGaN結晶が実 現されている。ただし、圧力容器部材からの不純物 の混入や、成長条件の精密制御が困難でマクロ欠陥 抑制が難しい点が課題であり、現状は開発レベルに 留まっている。

ボイド形成剥離法(VAS法)によるGaN単結晶基 板の製造

1. VAS法の概要

当社で開発したVAS法によるGaN単結晶基板の形成 方法は、基本的にはFig.5に示した通りであり、内部 にボイドを有する異種基板上のテンプレート上へ厚 いGaN結晶を成長し、異種基板からGaN結晶を剥離 することで自立したGaNの単結晶基板を実現する⁷。

Tab	le 1	Ν
Iab		11

Method of GaN crystal growth and their characteristics

	Growth method	Features	Present status	
	Metal-organic vapor phase epitaxy	GaN is grown by reaction between	Used for ELO-template growth in R&D	
Vapor	(MOVPE)	Trimethylgallium and NH3.	stage of LDs.	
phase	Hydride vapor phase epitaxy	GaN is grown by reaction between	Main method for mass-production of	
	(HVPE)	GaCl and NH ₃ .	GaN substrates	
Liquid phase	Ammonothermal method	GaN is re-crystallized from GaN raw	R&D phase.	
		material dissolved in supercritical NH3.		
	Na-flux method	GaN is grown by reaction between Ga	P&D phase	
		and N ₂ both dissolved in Na-melt.	KeD phase.	

用いる成長法は上述した高速成長が可能なHVPE法で ある。HVPE成長装置の概略図をFig.6に示す。装置 内の高温に保ったGa融液にHClガスを供給すること でGaClガスを発生し、これと別ラインから供給した NH3ガスを、1100℃程度に保った基板上で反応させ ることでGaN結晶を成長する。種基板となるボイド を含むテンプレートは、Fig.7 (a)に示すように、 MOVPE法によりサファイア基板上にGaN薄膜を成長 したテンプレートを形成し、その表面にTi薄膜を蒸 着し熱処理を加えることで実現する。熱処理により Ti薄膜がTiNの網目状構造へ変化するとともに、GaN 層内にナノメーターサイズの無数のボイドが形成さ れる (Fig. 7 (b)の左側の図)。このボイド上にGaN結 晶をHVPE法により成長すると、Fig. 7 (b)あるいは Fig. 5に模式的に示したように、まず微細なGaN核が 形成され、それらが結合することで連続膜が形成さ れる。Fig. 7 (b)の右側の図に見られるように、GaN 結晶成長後も種結晶とHVPE成長層の間にはボイドが 残留しており、基板を剥離しない場合と比較して、 基板であるサファイアとGaN結晶間の応力が極めて

小さい状態で成長が進行する。このため、基板を剥 離しない場合には、精々100µm厚程度のGaN層の成 長が限界であったところを、VAS法を用いることで mm単位の厚いGaN結晶の成長が可能となる。このよ うに厚いGaN結晶を成長する過程で、上述の転位同 士がランダムウオーク的に出会って減少する効果に より、転位密度は10⁶/cm²台前半にまで低減される。 数~数100µmサイズのパターンを用いるELO技術を 用いず、ナノメーターサイズのボイドを用いるため、 Fig. 8に示したように基板全面にわたって均一に低い 転位密度が得られる点もVAS法の特徴の一つである。

VAS法によるGaN単結晶基板におけるマクロ欠陥 の抑制

先に述べたように、GaNの結晶成長ではFig. 4に示 すようなマクロ欠陥が発生しやすい。これは特にELO

Fig. 8

Threading dislocation density (TDD) distribution of free-standing GaN substrate made by the VAS-method

Fig. 7

(a) Sequence of seed crystal formation in void-assisted separation method (VAS) and (b) SEM photograph of initial stage of GaN substrate growth by HVPE on the voided-seed crystal

Fig. 9 Photographs of free-standing GaN substrates made by the VAS method. (a) and (b) as-grown GaN bulk crystals before and after growth optimization, respectively. (c) Free-standing GaN wafers after application of polishing process.

法において顕著であるが、平坦成長を基本とするVAS 法においても開発当初には大きな問題であった。これ らのマクロ欠陥は、GaN結晶自体の特性にも起因して 発生するため、VAS法やHVPE法以外の方法で製作した GaN自立基板においても発生し、他機関からもその成 因や抑制法に関する報告がしばしばなされている^{22),23)}。

Fig. 9 (a) に開発当初の2インチ径GaN自立基板の、 HVPE成長直後の写真を示す。図中に黒く見える点 が、インバージョンドメインに起因したピットや貫 通穴である。右側の灰色の楕円形の模様は、成長中 に裏面結晶が蒸発して生じた金属Gaの残渣痕であり、 裏面加工で除去可能なものである。開発当初はVAS法 による剥離、低転位化とこれらのマクロ欠陥の制御 を両立する条件を見出すことは困難であった。しか し、従来のHVPE装置よりも格段に精密な成長条件制 御を可能とするHVPE成長装置を自社開発したことが ブレークスルーとなり、ウエハ全面にわたり上述の 全てのマクロ欠陥の抑制が可能となった。Fig. 9 (b) が、改善後のGaN自立基板の写真である。Fig. 9 (a) で見られたピットや貫通穴に対応する黒い点が見ら れないことに加えて、光学顕微鏡観察やMOVPEによ る成長実験により、IDなどがほぼ無いGaN表面が得 られていることを確認している。また、Fig. 9 (c)は そのようなマクロ欠陥を含まないGaN結晶に研磨加 工を施して製作した2インチのGaN単結晶基板の写真 である。着色もなく透明で、透過像にも乱れが見ら れず、高濃度の不純物や欠陥を含まない高品質な GaN単結晶基板が実現されていることが見て取れる。

3. GaN単結晶基板の更なる低転位化

VAS法により製造したGaN単結晶基板の転位密度は 開発当初から10⁶/cm²台の前半であり、青色LDや高 出力LED向けとしては十分に低い転位密度であり、 現在もこれらの用途に広く用いられている。しかし ながら、将来的に更に高出力のLD、LEDや、更には 高効率なパワーデバイスへの応用を考えた場合、よ り低い転位密度の基板が望ましい場合も想定される。 ここでは、そのような次世代デバイスへの応用を見 据えた当社でのGaN単結晶基板の低転位化へ向けた 取り組みを説明する。

VAS法は、先に述べた「平坦成長」によりGaN単結 晶基板を製作する場合にあたり、成長厚の増大に伴 い隣り合う転位がランダムウオーク的に会合し、表 面に表れる転位が減少するというメカニズムにより 転位が減少する。このメカニズムによれば、転位密 度はGaN成長厚に反比例して減少するものと期待さ れる。しかしながら、開発当初の成長条件を用いて、 GaN層の厚さを単純に厚くした場合には、Fig. 10 (a) のAあるいはBに示すように、ある臨界厚までは転位 密度は成長厚に反比例して減少するものの、GaN厚 が臨界値を超えた段階で転位密度が減少しなくなる という挙動を示した¹⁰⁾。これは、Fig. 5に示した様な 成長初期に生じるC面の反りによる応力や、それ以外 にも成長装置部品とGaN結晶間の付着による応力等 の様々な応力が、成長厚の増大とともに増加し、こ の応力がGaN層の厚さが臨界厚を超えた段階で新た な転位を導入し始め、GaN結晶が塑性変形を起こし ているためと考えられる。この臨界厚を大きく超え てGaN結晶を成長した場合には、結晶に割れやクラ ックが発生し、製品に十分な大きさのGaN結晶を得 ることが困難となる。この現象のため、開発当初は、 VAS法で成長可能なGaN結晶の厚さは1mm程度に制 限されており、得られるGaN単結晶基板の転位密度 も10⁶/cm²台前半が限界であった。

上記の現象は、前節で見たようにGaN単結晶基板 がマクロ欠陥を含まない場合の状況であり、GaN単結 晶基板に意図的にインバージョンドメイン等のマクロ 欠陥を多量に導入した場合には、開発当初の成長条 件であっても2~3mm厚のGaN結晶をクラック無しで 成長することが可能であった。この場合、インバー ジョンドメインの無い部分の転位密度は1×10⁶/cm² かそれ以下にまで低減可能であった。しかしながら、 インバージョンドメインはGaN結晶の裏から表まで 貫通して存在する欠陥であり、研磨加工で除去する

Fig. 10 Effect of GaN crystal hardness on the available as-grown thickness, tas and TDDs. (a) Relationships between tas and TDD for the macro-defect-free GaN substrates grown by the VAS-method using the conditions A-D. Cathodoluminescence images for GaN substrates grown using the conditions B and D are shown as insets. (b) Dependence of nano-indentation hardness values of the GaN crystal grown by the VAS-method on HVPE-growth conditions A-D. Copyright (2018) The Japan Society of Applied Physics¹²)

ことはできない。インバージョンドメイン上にデバ イス構造を成長した場合、その上の成長速度や不純 物取込が通常の領域と異なるため、このようなGaN 結晶を用いて製作したGaN単結晶基板を実用デバイ スに用いることはできない。

この結晶厚さと欠陥導入のジレンマを解決する手段 として、我々は、HVPE成長条件を精密に制御するこ とで、GaN結晶の硬さを制御できることを見出した。 GaN結晶を硬くすることで、現在は、当初よりも遥か に厚いGaN結晶を、マクロ欠陥を導入せずに成長で きるようになっている。Fig. 10 (b)は、成長条件によ るGaN結晶の硬さの変化をナノインデンテーション法 により調べた結果をまとめたものである。開発当初の 条件Aでは、GaN結晶の硬さは19.6GPaであったのが、 条件をB, C, Dと改善するにつれて硬さが増加し、最 終的には条件Dにおいて硬さを22GPaにまで増やすこ とに成功している¹²⁾。GaN単結晶基板のナノインデ ンテーション測定に関する報告は、他機関からもなさ れているが、成長条件によりGaN結晶の硬さが変化 するという点は、我々が初めて明らかにした知見であ り、また条件Dで得られた結晶硬さはこれまで報告さ れた中で最大の値である24)-28)。

硬さの増加に伴い、クラックを生じずに成長可能 なGaN結晶の厚さもFig. 10 (a)に示すように増大し、 条件DにおいてはFig. 11に示すような最大6mm厚の 結晶が得られており、その際の結晶の最表面におけ る転位密度は10⁵/cm²台の前半にまで減少した。Fig. 10 (a)の条件Dにおいては、最大厚の結晶であっても 転位密度の飽和傾向は見られない。このことは、更 に厚いGaN結晶の実現を期待できるということを意 味している。現在のところ当社のHVPE装置で成長可 能なGaN結晶厚の限界は、GaN結晶の割れではなく、

Fig. 11 Photographs of thick GaN bulk crystal for 2-inch wafer grown using the conditions D after cylindrical grinding. (a) Top-view and (b) bird's-eye view. Copyright (2018) The Japan Society of Applied Physics¹²)

装置構成上の問題で決まっており、更なる装置構造 の改善により将来的にはより厚く、より低転位な GaN結晶を実現できると考えている。

転位を多く含む金属の塑性変形は一般的に既に存 在する転位の運動で説明されるが、GaN自立基板の ナノインデンテーション測定の結果をこの考え方で 説明するのには無理がある。測定したGaN単結晶基 板の転位密度は10⁶/cm²台であり、この場合の転位の 間隔は10µm程度である。ナノインデンテーション測 定は、先端が数10nm径の圧子を100nmほどGaN表面 に押し込むかたちで行われるが、その際に圧子先端 がちょうど貫通転位付近に命中する可能性は高くな い。このため、測定前に既に存在していた転位の運 動が測定結果に影響する可能性は少なく、むしろこ こでの「硬さ」は、応力による新たな転位の発生し にくさの反映と捉えるのが妥当である。同じGaN結 晶でありながら転位の発生しにくさが異なる原因は 今のところ明確ではないが、一つの説明としては、 結晶に含まれる原子空孔の密度が異なることにより、 空孔の凝集による転位ループの発生しやすさに違い が生じている可能性がある。

この仮説が正しければ、条件Dで成長したGaN結晶 では、従来条件A-Cで成長したものよりも結晶中の原 子空孔濃度が少ないため、より厚く成長した場合で も新たな転位の発生が抑制され、従来以上に転位を 低減できるようになったと考えることができる。 GaN結晶中での空孔の挙動は未だ明確にはなってい ないが、GaAs結晶中では10個以上の空孔からなるク ラスタが安定に存在することや²⁹⁾、金属AI結晶中の 空孔が凝集して安定な転位ループを形成することが 計算により示されており³⁰⁾、GaNについても同様な 検討が進展することを期待している。

4. GaN単結晶基板の大口径化

GaN系デバイスの低コスト化のためには、基板の 大口径化も重要な課題である。現状で市販されてい るGaN単結晶基板は2インチ径のものが主流である が、将来的にはこれを4インチ径あるいは6インチ径 にまで拡大する必要があるであろう。VAS法において は、種結晶となるサファイア基板さえ大口径のもの が準備できれば、同様の口径のGaN単結晶基板を製 造するのは比較的容易である。しかしながら、単純 に小口径ウエハと同様の結晶成長を行っただけでは、 量産レベルのデバイス製作に適用できる基板とはな らない。これは、ウエハ径を拡大する際には、小口 径ウエハと同等のオフ角分布を得るのが困難である ためである。上述のように、基板上に製作するデバ イスの特性はオフ角の影響を受けるため、オフ角分 布が大きい場合にはデバイス歩留が低下する恐れが ある。このため、大口径の基板であってもオフ角分

Fig. 12 Schematic explanation of difficulty in achieving small off-angle variation for large size wafer in comparison with small wafer. If C-plane curvature of GaN crystals are the same, large wafer should have larger off-angle variation than small wafer. 布は小口径基板と同等かそれ以下に抑える必要があ る。しかしながら、現状のGaN結晶はFig.5に示した ようにC面が反った状態で成長されるため、Fig.12に 示すように、もし同じC面の反りを持つ結晶から大口 径のウエハを切り出した場合には、必然的にオフ角 分布が小口径ウエハよりも大きくなり、実際のデバ イス製作で許容できる範囲を超えてしまう恐れがあ る。例えば、GaN成長層の厚さが1mmの場合には、 VAS法では2インチウエハのオフ角分布は0.3~0.4°程 度となる(基板中心から±15mm位置で測定)。とこ ろが、同様の厚さの結晶で4インチウエハを製作した 場合には、オフ角分布はその2倍の0.6~0.8°にまで増 加する(基板中心から±30mm位置で測定)。

大口径基板のオフ角分布低減に対しては、当社で は2通りのアプローチを試みている。一つは、Fig. 13 (a)に示すように、現状の2インチ基板から六角形のタ イルを多数作製し、これらを組み合わせて、その上 に再度HVPE成長することでタイルを相互に結合して 大口径基板を制作する方法であり、タイリング法と 呼んでいる。これによりFig. 13 (b)に示すように7イ ンチ径という世界最大のGaN基板の実現に成功して いる³¹⁾。この手法の場合、それぞれのタイルのオフ 角とオフ角分布を一致させることで、オフ角分布が 標準的な2インチ基板と同等である大口径基板を実現 できる。タイリング基板は、隣り合うタイルの結合部 に若干の結晶格子の乱れは含むものの、タイリング基 板上へ厚いGaN層を成長したインゴットのスライスや 研磨、あるいは、タイリング基板上へのエピタキシャ ル成長も問題なく行えることを確認している。

もう一つの方法は、大口径のサファイア上にVAS法 を実施する際に、Fig. 5に示したようにGaN結晶の成

(a) Concept of tiling method and(b) Photograph of 7-inch freestandingGaN substrate made by the tiling method

長厚を大幅に厚くすることで、GaN単結晶基板のオ フ角分布を低減する方法である。この際にも、前節 で述べたGaN結晶の硬さ制御に基づく厚膜化が極め て有効な手段であり、我々はこれにより、オフ角分 布の小さい2-6インチ径のGaN単結晶基板の製作に 成功している。この方法で製作した4インチ、6イン チ径のGaN単結晶基板の写真を、従来の2インチ径基 板とともにFig. 14に示す。2インチと4インチ基板は、 研磨済み(裏面は粗面仕上げ)で、着色の無い透明 な結晶が実現されている。6インチ基板は研磨してい ないアズグロウン結晶であり、裏面に成長時に生じ る金属Gaがあるため金属色の着色が見えるが、基本 的には2インチ、4インチ基板と同等の結晶性を有し ている。GaN層の厚膜化の結果、10⁵/cm²台の低い転 位密度と、小さなオフ角分布(最大値-最小値、2イ ンチで0.1°、4インチで0.2°)を持ち、かつ、マクロ 欠陥のほぼ無いGaN単結晶基板が得られている。

Fig. 14 Photograph of 2, 4 and 6-inch size macro-defect-free GaN wafers grown using the conditions D. The 2 and 4-inch wafers were single side polished wafers. On the other hand, the 6-inch one was the as-grown wafer with residual Ga on its backside.

Copyright (2018) The Japan Society of Applied Physics $^{12)}$

まとめ

GaN単結晶基板の製造法に関して、これまで提 唱・試験された各種の手法を概観するとともに、 我々の開発したボイド形成剥離法(VAS法)による GaN単結晶基板製造について詳述した。

VAS法により、全面が均一かつ低い転位密度 (10⁶/cm²台前半)であり、しかもデバイス動作を損 なうマクロ欠陥が無い、GaN単結晶基板を世界で初 めて実現した。また、HVPE成長条件の調整により、 GaN結晶の硬さが制御できることを世界で初めて明 らかにし、この技術に基づいて硬さを増したGaN結 晶を用いることで、10⁵/cm²台前半の極めて低い転位 密度を持つGaN単結晶基板の実現と、6インチ径まで のGaN単結晶基板の大口径化を達成した。また、タ イリング法により世界最大の7インチ径のGaN単結晶 基板の実現にも成功している。

今後は、青色LDや高効率LEDの一般照明や自動車 ヘッドライトへの用途拡大はもちろんのこと、次世 代のパワーデバイスなどの環境デバイスの実現・普 及にも、我々のVAS法によるGaN単結晶基板が大きく 貢献できるものと期待している。

謝辞

本報告の一部は、環境省「未来のあるべき社会・ ライフスタイルを創造する技術イノベーション事業」 の委託を受けてなされたものである。

引用文献

- 1) I. Akasaki et al., J. Cryst. Growth, 98, 209 (1989).
- 2) S. Nakamura, Jpn. J. Appl. Phys., 30, L1705 (1991).
- S. Nakamura et al., Jpn. J. Appl. Phys., 34, L797 (1995).
- S. Nakamura et al., Jpn. J. Appl. Phys., 35, L74 (1996).
- 5) A. Usui et al., Jpn. J. Appl. Phys., 36, L899 (1997).
- K. Motoki *et al.*, J. Cryst. Growth, 237-239, 912 (2002).
- 7) Y. Oshima et al., Jpn. J. Appl. Phys., 42, L1 (2003).
- 8) Y. Oshima et al., Jpn. J. Appl. Phys., 45, 7685 (2006).
- 9) Y. Oshima et al., J. Cryst. Growth, 312, 3569 (2010).
- 10) H. Fujikura et al., J. Cryst. Growth, 350, 38 (2012).
- H. Fujikura *et al.*, *Proc. SPIE*, 10104, 1010403 (2017); doi:10.1117/12.2257202.
- H. Fujikura et al., Jpn. J. Appl. Phys., 57, 065502 (2018).
- H. Ohta *et al.*, *IEEE Electron Device Lett.*, **36**, 1180 (2015).
- 14) T. Oka et al., Appl. Phys. Express, 8, 054101 (2015).
- 15) 藤倉 序章, 電気学会誌, 137, 685 (2017).
- M. Sarzyński et al., Appl. Phys. Express, 5, 021001 (2012).
- F. Horikiri et al., Jpn. J. Appl. Phys., 56, 061001 (2017).
- 18) K. Fujito et al., J. Cryst. Growth, 311, 3011 (2009).
- 19) K. Xu et al., Chin. Phys. B, 24, 066105 (2015).
- 20) F. Kawamura et al., Jpn. J. Appl. Phys., 45, L1136 (2006).
- R. Dwiliński et al., J. Cryst. Growth, 310, 3911 (2008).

- 22) J. L. Weyher et al., J. Cryst. Growth, 312, 2611 (2010).
- 23) C. E. C. Dam et al., J. Cryst. Growth, 307, 19 (2007).
- 24) M. Fujikane et al., J. Alloys and Compounds, 450, 405 (2008).
- 25) J. Huang et al., Nanoscale Res. Lett., 7, 150 (2012).
- 26) M. Fujikane et al., Phys. Status Solidi C, 7, 1798 (2010).

- 27) C. Tsai et al., Appl. Surf. Sci., 254, 1997 (2002).
- 28) R. Nowak et al., Appl. Phys. Lett., 75, 2070 (1999).
- 29) T. E. M. Staab et al., Phys. Rev. Lett., 83, 5519 (1999).
- 30) V. Gavini et al., Phys. Rev. B, 76, 180101 (2007).
- T. Yoshida et al., Phys. Status Solidi B, 254, 1600671 (2017).

PROFILE

 藤倉
 序章

 Hajime FUJIKURA
 株式会社サイオクス

 事業開拓部
 博士(工学)

株式会社サイオクス 事業開拓部 博士(工学)

藤本 哲爾 Tetsuji FujiMoto 株式会社サイオクス 基板製品部 基板技術課

吉田 丈洋 *Takehiro YoshiDA* 株式会社サイオクス 事業開拓部 博士 (工学)

<u>北村 寿朗</u> Toshio KITAMURA 株式会社サイオクス 基板製品部 基板技術課 博士 (工学)

今野 泰一郎 *Taichiro Konno* 株式会社サイオクス 事業開拓部

柴田 真佐知

事業開拓部

Masatomo Shibata

株式会社サイオクス

鈴木 貴征 Takayuki SUZUKI 株式会社サイオクス 基板製品部 基板技術課