

5G用プリント配線板の材料開発を支える分析技術

株式会社住化分析センター		
マテリアル事業部		
岡林	真	義
大阪ラボラトリー		
大畑	卓	也

はじめに

5G(第5世代移動通信システム)は4Gに代わる新 しい通信規格である。世界各国の標準化団体が参加 する3GPP(Third Generation Partnership Project)を 通じて国際標準仕様の策定が進み、商用サービスが 開始されている。5Gは、「超高速」、「超低遅延」、「多 数同時接続」を実現でき、あらゆるモノがインター ネットにつながる「IoT(Internet of Things)」の基盤 となることが期待されている。

5Gの本格的なサービス開始に伴い、新しい端末や IoT対応電子機器の開発が促進され、これらに使用さ れるプリント配線板の需要も高まっている。本稿で は、そのプリント配線板について、材料に求められ る特性とその分析事例について紹介する。

5G用プリント配線板の特性要求

大容量の情報を処理するためには、使用周波数を 高周波側にシフトすることが最も効果的であるとさ れている。従来のプリント配線板を高周波数帯で使 用すると、高速信号の遅延・減衰、回路内の発熱な どの問題が無視できなくなる。そのため、5G用プリ ント配線板の材料には、「低伝送損失」および「高放 熱化」という二つの特性が要求される。

1. 低伝送損失

伝送損失(*a*)は、導体損失(*ac*)と誘電損失(*ad*) で表され、以下の関係がある¹⁾。

 $\alpha = \alpha c + \alpha d$ (α : 伝送損失、 αc : 導体損失、 αd : 誘電損失)

導体損失は、表皮効果と導体表面粗さに影響され る。表皮効果は、導体(銅箔)を流れる信号が高周 波になるにつれて電流密度が銅箔表面に集中する現 Conductor Conductor High-frequency High-frequency High-frequency Fig. 1 Skin effect: Skin depth decreases with increasing frequency

象である(Fig. 1)。1 GHzにおいて、信号が流れる表 皮深さはわずか2.0 µmほどであるが、5Gで使用され る高周波数帯では、表皮深さはさらに浅くなる。プ リント配線板では銅箔と基材樹脂の密着性を高める ため、銅箔表面を粗化処理するが、銅箔表面の粗さ が表皮深さより大きい場合、信号が散乱し、導体損 失の要因となる。一方、銅箔を平滑にすると導体損 失を小さくできるが、基材樹脂との密着性が得られ にくくなるという課題が生じる。

誘電損失は、基材樹脂の比誘電率 (εr) の平方根、 誘電正接 (tanδ)、周波数 (f) に比例する。

 $\alpha_d \propto \sqrt{\varepsilon_r} \times f/C \times tan\delta$ (ε_r : 比誘電率、f: 周波数、C: 光速、tanδ: 誘電正接)

誘電損失 (αd) の低減には、比誘電率 (εr) と誘電 正接 (tanδ) を小さくすることが必要である。誘電 特性 (比誘電率および誘電正接) を小さくするため には、極性基の低減や分極率の小さな官能基の導入 による低極性化 (例:フッ化ポリイミドなど)、空孔 を利用した多孔質化 (例:多孔質ポリイミドなど)、 剛直な主鎖による分子運動の抑制 (例:液晶ポリマー (LCP) など) などが考えられる。

2. 高放熱化

プリント配線板からの発熱は増大の一途をたどっ ており、放熱をいかに効率的に行うかが製品の良し 悪しを決める。その一つの解決策として、基材樹脂 にフィラーを分散させることにより伝熱路を形成さ せ、熱伝導性を高めたコンポジット材料が開発され ている²⁾。基材樹脂とフィラーの親和性や樹脂硬化 前、成型前のフィラーの分散性を数値化し、開発に フィードバックする取り組みも注目されている。 フィラーは高充填させる方が高放熱には効果的であ

るが、機械特性・表面平滑性・加工性などの新たな 課題も生じることから、バランスを考えた設計が必 要である。

プリント配線板材料の開発課題、評価項目および 分析技術

三層構造を有するプリント配線板は、銅箔、接着 剤、基材樹脂で構成される(Fig. 2)。各構成部材の 開発課題とその評価項目および分析技術について Table 1に示す。

 Table 1
 Development issues, items, and analyses of each material of the printed wiring board

Loss	Material	Development issue	Item	Analysis
Dielectric loss	Base/cover material	Low dielectric constant (Dk) and	Dk and Df measurement system	Cylindrical cavity resonator, Balanced-type circular disk resonator
	+ filler	low dielectric loss	Chemical structure	Supercritical methanol decomposition GC-MS,
		tangent (Df)		Supercritical methanol decomposition LC-MS,
				Pyrolysis GC-MS, ¹³ C solid-state nuclear magnetic resonance (NMR), FT-IR
		Low water	Water absorption rate	Gravimetric analysis (JIS C 6481),
		absorption	measurement	Heat evaporation Karl Fischer analysis
		Low coefficient of	Coefficient of thermal	High sensitivity thermomechanical analysis
		thermal expansion	expansion measurement	
		Suppression of polar group mobility	Molecular mobility	Pulsed NMR
		Surface roughness	Roughness analysis	Contact-type surface roughness measuring instrument, Confocal microscope
		Low Dk and low Df	Dk and Df measurement	Cylindrical cavity resonator, Balanced-type circular disk
			system	resonator
			Particle size distribution	Laser diffraction analysis, Cross-section scanning electron
				microscopy (SEM), Image-analysis particle size distribution
			Content	Inductively coupled plasma atomic emission spectroscopy
				(ICP-AES), Inductively coupled plasma mass spectrometry (ICP-MS)
		Dispersibility	Compatibility	Hansen solubility parameter
		base/cover material and filler	Dispersibility	Ultrasonic spectroscopy, Pulsed NMR, Centrifugal sedimentation, Rheometer
		High thermal	Particle size distribution	Laser diffraction analysis, Cross-section SEM, Image-analysis
		conductivity		particle size distribution
	Adhesive	Low Dk and low Df	Dk and Df measurement	Cylindrical cavity resonator, Balanced-type circular disk
			system	resonator
Conductor	Surface-treated	Low surface	Surface observation	Laser microscope, SEM, Confocal microscope
loss	foil	roughness	Specific surface area	Gas (Kr) adsorption-desorption isotherm
	Interface between	Adhesion	Adhesion test	Peel test, Surface and interfacial cutting analysis system (SAICAS)
_	base/cover		Surface analysis	X-ray photoelectron spectroscopy (XPS), Time-of-flight secondary
	material and			ion mass spectrometry (TOF-SIMS), etc.
	surface-treated foil		Surface observation	SEM, Transmission electron microscope (TEM), etc.

Fig. 2 Schematic view of a printed wiring board

本項では、銅箔の分析事例として比表面積測定に よる表面形状の粗さ評価、基材樹脂の分析事例とし てポリイミドフィルムの誘電特性と化学構造解析に ついて紹介する。

銅箔の分析事例:比表面積測定による表面粗度評価(導体損失)

高周波数帯では表皮効果の影響が無視できないた め、銅箔は低粗度が求められる。銅箔表面の観察法 としてSEMやAFMがあるが、いずれも銅箔の観察範 囲が一部に制限される。また、AFMでは表面凹凸を 高低差として数値化できるが、複雑な表面凹凸形状 を数値化できないことが課題である。そこで、銅箔 の表面凹凸形状を比較的大面積で測定かつ数値化可 能なKrガス吸着法による比表面積測定が有効となる。

本試験では箔厚18 µmの原箔、表面処理箔(1)、表面 処理箔(2)の3種を用いてKrガス吸着測定を実施した。 銅箔は短冊状の形状で合計150 cm²を供した。**Table 2** に各銅箔におけるKrガス吸着法の比表面積測定結果 およびAFM、SEM観察結果を示す。Krガス吸着法の 結果から、2種の表面処理箔の方が原箔より比表面積 が大きいことが分かった。これは、SEMおよびAFM による表面形状観察結果と傾向が一致した。Krガス 吸着法は、大きい面積の銅箔表面形状の粗さを数値 化できる。

2. 基材樹脂(ポリイミドフィルム)の分析事例: 誘電特性と化学構造解析(誘電損失)

ポリイミドはスーパーエンジニアリング・プラス チックの一つであり、その優れた耐熱性、機械特性、 電気特性に加え、比較的安価であることから、プリ ント配線板の基材樹脂として広く利用されている。 しかし、高速信号に対しては損失が大きいため、低誘 電特性を有するポリイミドが求められている。ポリ イミドの低誘電特性化の方法の一つとして低吸湿化 が挙げられる。ポリイミドは他の基材樹脂に比べ吸 湿性が高く、吸湿状態では誘電特性が悪化すること が知られている³⁾。ポリイミドの吸湿性を下げるため には水と相互作用するイミド基の含有率をその化学 構造から低減させる必要があり、その一つとして分 子量の大きなモノマーを採用する方法が挙げられる。

今回、2種類のポリイミドフィルムについて化学 構造解析を実施し、その結果を基にイミド基の含有 率を算出し、吸水率および誘電特性との関係性を評 価した。ポリイミドの構成モノマーの定性は超臨界

	Gas (Kr) adsorption-desorption isotherm	Surface observation		
	(specific surface area)	AFM	SEM	
Raw foil	$0.018 \text{ m}^2/\text{g}$	Rz: 0.0982 μm Ra: 0.00554 μm		
Surface-treated foil (1)	$0.028 \text{ m}^2/\text{g}$	Rz: 0.735 μm Ra: 0.109 μm		
Surface-treated foil (2)	$0.046 \ { m m^2/g}$	Rz: 1.93 μm Ra: 0.232 μm		

 Table 2
 Specific surface area and surface observation of raw foil and surface-treated foil (1) (2)

AFM: Atomic force microscope, SEM: Scanning electron microscopy, Rz: Surface roughness depth, Ra: Arithmetric average roughness

Fig. 3 GC-MS TIC chromatogram of polyimide (1) decomposed by supercritical methanol

Fig. 4 GC-MS TIC chromatogram of polyimide (2) decomposed by supercritical methanol

メタノール分解GC-MSで行った。超臨界状態のメタ ノールで処理することによりイミド結合が選択的に 切断されるため、モノマーの構造を保持した状態で 分解することができる⁴⁾。2種類のポリイミドフィル ムの超臨界メタノール分解GC-MSクロマトグラムを Fig. 3およびFig. 4に示す。Fig. 3において、ピロメ リット酸 (テトラメチル化体) および4,4'-ジアミノジ フェニルエーテル (テトラメチル化体) が検出され たことから、ポリイミド(1)は4,4'-ジアミノジフェニ ルエーテル・無水ピロメリット酸重縮合物であるこ とが推定された。同様に、ポリイミド(2)はポリイミ ド(1)の重縮合物に加え、4,4'-ビス(3-アミノフェノキ シ) ビフェニル・無水ピロメリット酸重縮合物も含 まれることが推定された。ポリイミド(2)について、 重縮合物のモル比を算出するために¹³C固体NMR測 定を行った。その結果をFig. 5に示す。シグナルの積 分強度比から、モル比は11:1と算出された。ポリイ ミドの化学構造から算出したイミド基の含有率を

Fig. 5 ¹³C solid-state NMR spectrum of polyimide (2)

Table 3 Results of physical property measurements and chemical structure analysis of two types of polyimides

Ev	aluation item	Method	Polyimide (1)	Polyimide (2)
Physical property	Dielectric constant Dielectric loss tangent	Cylindrical cavity resonator (10GHz) ASTM D 2520 (JIS C 2565) Test methods of copper-clad laminates	3.33 ± 0.02 0.0256 ± 0.0003	$\begin{array}{c} 2.96 \pm 0.01 \\ 0.0097 \pm 0.0002 \end{array}$
measurement	Water absorption	for printed wiring boards JIS C 6481	2.5%	1.4%
Chemical structure analysis	Chemical structure	 Supercritical methanol decomposition GC-MS Supercritical methanol decomposition LC-MS Pyrolysis GC-MS •¹³C solid-state NMR •FT-IR 	Polycondensation product: •4,4'-diaminodiphenyl ether •Pyromellitic dianhydride (+) (Polycondensation product: • 4,4'-bis(4-aminophenoxy) biphenyl • Pyromellitic dianhydride (+) + (+
	Imide group concentration	(Calculated by chemical structure)	36.6 wt%	26.4 wt%

Table 3に示す。ポリイミド(1)よりもポリイミド(2) の方が分子量の大きなモノマーを採用しており、イ ミド基の含有率が低いことが分かった。それに伴い、 吸水率および誘電特性値も低くなっており、イミド

基の含有率との相関関係が認められた。化学構造と 物性は切っても切り離せない関係であり、化学構造 を解明することで低誘電特性化に向けた開発指針が 得られることを期待する。

おわりに

本稿では、銅箔の表面凹凸形状を、大きい面積で 測定可能かつ数値化可能なKrガス吸着法、ポリイミ ドフィルムの誘電特性と化学構造の関連性について 事例を紹介した。当社では他にもTable 1に示したよ うな幅広い分析・評価技術を保有している。これら の技術を活用して5G向け材料開発を支援できれば幸 いである。

引用文献

- 1) 大野 大典, ネットワークポリマー, 38(6), 277 (2017).
- 2) 馬場 大三, 澤田 知昭, パナソニック電工技報, 59(1), 17 (2011).
- 福永香, 倉橋 真司, 第21回エレクトロニクス実装
 学会講演大会論文集, 85 (2007).
- 4) 岡田 明彦 ほか, 住友化学, 2002-I, 4 (2002).