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Simulation plays a critical role in the design of chemical equipment and the optimization of process 
conditions, as it enables the analysis of physical quantities distributed in three dimensions within the 
equipment. However, conventional grid-based and particle-based methods face various challenges when 
handling fluid flow in complex geometries. The immersed boundary method has emerged as a promising 
alternative to address these challenges. This method offers several advantages, including simplified mesh 
generation using orthogonal grids, ease of modifying geometries, and reduced computational costs. This 
report specifically focuses on the volume force-based immersed boundary method, presenting application 
examples including the simulation of Newtonian fluids, non-Newtonian fluids, porous media flow, and 
turbulent flow.

はじめに

　化学装置などの複雑な形状の内部における流れを
把握することは、化学装置の設計やプロセス条件の最
適化などに必要不可欠である。特に、化学装置内部の
流れの特性を理解することは、効率的な化学反応を実
現し、製品の品質や収率を向上させるためにも欠かせ
ない要素である。しかし、実験では条件ごとに装置を
製作する必要があること、また、装置内部の3次元に
分布する多くの量を観測することが困難であることか
ら、シミュレーションを用いて装置内部における流れ
を把握することが広く行われている。シミュレーショ
ンを用いることで、実験に比べてコストや時間を大幅
に削減することができ、さらに、装置内部の詳細な流
れの挙動を可視化することが可能となる。従来の計算
手法では、格子の歪

ひず

みによる計算精度の悪化や不安定
化、メモリアクセスの低下などの問題がある。これに
対して当社では、装置内部流れの効率的なシミュレー
ションのため、埋め込み境界法（Immersed Boundary 
Method）に基づくプログラム開発を行っている。埋め
込み境界法は、適切な外力を付加することにより、直

交格子を用いて複雑な物体を表現する手法である。直
交格子を用いることでメッシュ生成が容易になる、形
状変更も容易になる、計算コストを削減できるなどさ
まざまな利点がある。この手法を用いることで、複雑
な形状を持つ装置内部の流れを簡便に計算することが
可能となり、設計の最適化やトラブルシューティング
に大いに役立つ。今回は、埋め込み境界法の紹介とそ
の計算例を示す。

複雑形状における流れのシミュレーション法

（1）これまでに開発された手法
　複雑形状における流れをシミュレーションするた
めに、これまでさまざまな手法が開発、適用されてき
た。例えば、領域をメッシュに分割して計算を行う格
子法では、境界に沿った座標に基づく境界適合格子
や、領域を多角形のセルに分割する非構造格子があ
る。また、領域をメッシュに分割せずに、流体の速度
で移動する離散点を用いて計算を行う粒子法もある。
これらの手法に対しては、以下のような課題が知られ
ている。境界適合格子においては、形状が複雑な場
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合、領域を分割する必要や、格子が大きく歪み、安定
に計算できなくなる場合がある。また、方程式の形が
非常に複雑になるため、プログラム開発のコストが上
昇する。非構造格子においては、メッシュの生成に多
大な労力がかかる、セルの隣接点が一般には隣接する
メモリに格納されないためメモリアクセスが悪く演算
コストがかかる、ポアソン方程式の行列の形が悪く収
束性が悪い、高次解法を適用することが難しい、とい
うことが知られている。粒子法においては、離散点が
領域を動き隣接関係が常に変化するため、メモリアク
セスが悪い、ポアソン方程式の行列の形が悪く収束性
が悪い、粒子の粗密をコントロールするのが難しく精
度を向上させることが難しい、ということが知られて
いる。そこで、近年注目を浴びているのが埋め込み境
界法である。
　埋め込み境界法は、適切な外力を付加することによ
り、直交格子を用いて複雑な物体を表現する手法であ
り、メッシュ生成が容易である。埋め込み境界法は、
直交格子を用いるため、直交格子の持つメリットを享
受できる。具体的には、方程式の形がシンプルであ
る、メモリアクセスがよい、ポアソン方程式の行列の
形が良い、高次解法が使える、などである。直交格子
を用いるため形状変更が容易であり、シミュレーショ
ンのリードタイムの短縮が見込める。また、多孔質体
のような複雑な形状を扱うことを考える場合、非構造
格子を用いることも考えられるが、まず多孔質体の画
像からCAD（Computer Aided Design）等を生成す
ることが非常に難しい。もし可能であるとしても、一
般に人力による手直しを要する。また、CADをもとに
メッシュを生成する際に、とがった境界などメッシュ
の品質を維持したまま分割を行うことは非常に難し
く、生成されたメッシュを再び人力で手直しする必要
があるなど多大な時間を要する。埋め込み境界法を用
いると、画像から直接多孔質体の体積率を求め、メッ
シュの品質等に気を遣うことなくそのまま計算を行う
ことが可能となるため、計算の事前準備が非常に効率
化できる。Table 1に複雑形状における流れのシミュ
レーション法の比較を示す。こうした比較をもとに、
当社では、埋め込み境界法を採用したプログラム開発
を行っている。

（2）埋め込み境界法の種類
　埋め込み境界法は、血管の流れをシミュレーショ
ンするためにPeskinにより開発された手法であり、適
切な外力を付加することにより、直交格子を用いて複
雑な物体を表現する手法である1)。埋め込み境界法に
は、大きく分けてcontinuous forcingタイプとdiscrete 
forcingタイプがある2)。continuous forcingタイプと
は、離散化前の方程式に物体を模擬するための外力を
追加する手法である。一方、discrete forcingタイプと
は、離散化後に物体を模擬するための外力を追加する
手法である。discrete forcingタイプにもさまざまな種
類があり、カットセル、ゴーストセル、体積力を用い
るものなどがある。このように、埋め込み境界法は群
雄割拠の状態であり、どの手法を用いるのが適切なの
か自らよく検討して適用する必要がある。

（3）体積力型埋め込み境界法
　体積力型の埋め込み境界法は、梶島によって開発さ
れたdiscrete forcingタイプの埋め込み境界法の一種
であり、各セルを占める物体の固相率に応じて速度に
ペナルティーをかける手法である3)。体積力型埋め込
み境界法は広く応用されている。例えば、固気液三相
流4)、フィルターによる油水分離5)、気液二相流を含む
撹
かくはん

拌6)、固気二相流の熱伝達7)などの例がある。Fig. 1
に体積力型埋め込み境界法の概略を示す。体積力型
埋め込み境界法では、ナヴィエ・ストークス方程式に
外力を付加して複雑な境界を模擬する。その外力の
大きさは、次の時間ステップで、境界条件に整合する
ような速度を実現するために必要な大きさになってい
る。このように、体積力型埋め込み境界法による計算
手順は、最後に外力を追加する以外は非圧縮性流体の
速度・圧力カップリング手法としてよく用いられる、
格子法で従来から用いられているフラクショナル・ス
テップ法2)と同じである。また、必要なパラメータは固
体体積率だけであり形状情報から求めることができる
ため、直交格子に対するプログラムをベースに修正す
るだけでよく、非常に開発を行いやすいという利点を
有する。しかしながら、体積力型埋め込み境界法には
いくつかの課題が残されている。まず、時間刻みが十
分に小さくないと、圧力損失が合わないなどの問題点

Method Mesh generation Form of equation Memory access Poisson equation High order scheme

Particle method Not required Unchanged Slow Difficult to solve Slightly difficult

Boundary-fitted grid Difficult Complex Fast Normal Applicable

Unstructured grid Difficult Unchanged Slow Difficult to solve Difficult

Immersed boundary method Easy Unchanged Fast Easy to solve Applicable

Comparison of numerical methods for flow in complex boundariesTable 1
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があるため、予備計算において時間刻みの大きさを確
認しておくことが重要である。また、池野ら8)が指摘す
るように、内部反復を行わず、discrete forcingタイプ
の埋め込み境界法をナイーブに適用した場合、ソレノ
イダル条件（非圧縮条件）と壁面におけるすべりなし
条件が一般には同時に満たされないことが述べられて
いる。この誤差は、層流の場合は比較的小さいが、乱
流の場合は注意しなければならないことも指摘されて
いる。また、混相流などの密度差がある流れにおいて
は、こうした誤差は体積保存性に悪影響を及ぼすこと
も知られている。

社内における取り組み事例

（1）ニュートン流体に対する計算例
　埋め込み境界法をニュートン流体に適用した例を紹
介する。計算領域として直方体領域を取り、その中に
水平に円管を埋め込む。流れは左側から流入し、右側
から流出している。簡単にするため、流入部と流出部
は周期境界条件とし、初期に静止している流体に、圧
力勾配をかけて流れが十分に発達するまで計算を行っ
た。Fig. 2に定常状態における円管における速度場の
大きさを示す。計算結果を見ると、流れが発達し最

終的にポアズイユ流れになることがわかる。本結果か
ら、埋め込み境界法を用いると、円管のように曲率を
持った境界面を扱うことが可能となることがわかる。

（2）非ニュートン流体に対する計算例
　次に、埋め込み境界法と非ニュートン流体に対する
数値計算手法を組み合わせた例を紹介する。非ニュー
トン流体として、粘度が剪

せんだん

断速度に応じて減少する
shear-thinning流体を用いる。多孔質体を模擬した円
柱が含まれる正方形の2次元領域を計算領域とする。
領域上面と下面は壁面、左面を流入面、右面を流出面
とする。Fig. 3に多孔質体を模擬した円柱の間を流れ
る非ニュートン流体の速度場の大きさ（コンター図）
と向き（ベクトル）を示す。また、Fig. 4に粘度の大き
さを示す。Fig. 3によると、円柱が接近している箇所
で流速が上昇していることが確認できる。また、多孔

Outline of volume of solid type immersed boundary methodFig. 1
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Fig. 3

V
e
l
o
c
i
t
y
 
m

a
g
n
i
t
u
d
e
 
[
m

/
s
]

5.2e-01

0.4

0.3

0.2

0.1

0.0e+00



埋め込み境界法を用いた複雑形状における流れのシミュレーション

40Copyright © 2025 Sumitomo Chemical Co., Ltd.住友化学 2025

質体内において、流れが集中して流れている箇所が確
認できる。Fig. 4によると、壁面近傍では滑りなし条
件が課されているため剪断速度が大きくなり粘度が低
くなっていることがわかる。一方、流路の中央では、
速度勾配が小さく結果として剪断速度が小さくなるの
で粘度が高い。このように、複雑な流路における粘度
場を詳細に把握することが可能となった。既往の非構
造格子を用いてこのような円柱群に沿った格子を作る
場合、格子が大きく歪むため、精度や安定性が低下す
る、計算時間が増大する、場合がある。

（3）多孔質体に対する計算例
　既存の非構造格子や境界適合格子の適用が難しい
ケースにおいても、埋め込み境界法を用いれば容易に
シミュレーションが可能となる場合がある。その一例
として、円柱群より複雑な形状で構成される多孔質体
流れの計算例を紹介する。多孔質体が含まれる長方形
の2次元領域を計算領域とする。領域上面と下面は壁
面、左面を流入面、右面を流出面とする。多孔質体の
画像から直接固体の体積率を求め、それをもとに多孔
質体を埋め込む。Fig. 5に多孔質体の間を流れる流体
の速度場を示す。流速が0 m/sである青い部分が固体
部であり、赤い部分が流体が流れている部分をあらわ
す。Fig. 5によると、流れが集中している箇所が確認
できる。埋め込み境界法を用いると、こうした多孔質
体の粗密による流れ具合の違いが圧力損失に及ぼす影
響を計算することが可能である。埋め込み境界法を用
いると、画像から直接多孔質体の体積率を求め、メッ
シュの品質等に気を遣うことなくそのまま計算を行う
ことが可能となるため、計算の事前準備が非常に効率
化できる。こうした技術を用いることにより、今後触
媒間の詳細な流れの把握や膜の設計への応用を見込ん
でいる。

（4）乱流に対する計算例
　最後に、埋め込み境界法と乱流に対する数値計算
手法を組み合わせた例を紹介する。乱流は工学的によ
く見られる現象であるが、生成された渦を正確に捉え
るためには膨大な格子数を要する。このため、前述し
たメモリアクセスの悪い手法では実用性が低下する。
埋め込み境界法はこうした点においても有効な計算手
法として期待できる。計算領域として直方体領域を取
り、その中に水平に円管を埋め込む。流れは左側から
流入し、右側から流出している。簡単にするため、流
入部と流出部は周期境界条件とし、初期に静止してい
る流体に、圧力勾配をかけて層流から乱流へと発達す
る様子の計算を行った。Fig. 6にいくつかの時間にお
ける円管における速度場の大きさを示す。計算結果を

Viscosity of shear-thinning non-Newtonian 
fluid in porous media

Fig. 4
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見ると、時間が経過するにつれて速度の変動が大きく
なる、境界層が薄くなる、など層流から乱流へ遷移が
起こっていることを示している。このように、埋め込
み境界法と乱流に対する数値計算手法を組み合わせ
ることで、円管における乱流への発達が再現できるよ
うになった。本例では、周期境界条件を用いて計算を
行ったが、流入部にサンプリングした流れ場のデータ
を、流出部に対流流出境界条件を適用することも可能
である。さらに、埋め込み境界法の利点を生かして、
温度計などの計装機器の流れに対する影響や弁などの
駆動性などへの応用も期待できる。

おわりに

　本稿では、埋め込み境界法の紹介とその計算例を
示した。今回は、体積力型埋め込み境界法を紹介し
たが、どの埋め込み境界法を使うのが適切か？とい
う問題を継続的に考えつつ、現在、乱流、反応や熱を
含めたシミュレーションができるよう本手法を発展さ
せている9)。他にも、混相流、粘弾性、粒子、輻射な
どのカップリングも考えている10)。埋め込み境界法を
さまざまな物理モデルとカップリングすることは必ず
しも自明ではないため、その検討も慎重に行っていき
たいと考えている。将来的には、埋め込み境界法を基
盤としたマルチ・フィジックスのシミュレーターを開
発し、反応器や装置の設計、プロセス条件の最適化
などに積極的に活用し、当社の事業を加速させていき
たい。
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