ARC[®] 測定データの実装置への 適用方法

住友化学工業株) 生産技術センター 菊 池 武 史

The Use of the ARC® to Estimate Safe Handling and Transportation Temperatures

Sumitomo Chemical Co., Ltd.
Process and Production Technology Center
Takeshi Кікисні

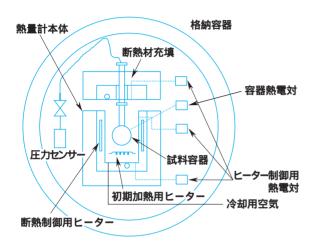
In industrial chemical production it is important to have the quantitative information about safe handling, storage and transportation temperatures for the given process. An adiabatic decomposition temperature for 24 hrs (ADT₂₄) is the temperature at which TMR (time to maximum rate) is 24 hrs derived from adiabatic measurements. A self-accelerating decomposition temperature (SADT) is the lowest ambient air temperature at which a self-reactive substance undergoes an exothermic reaction in specified commercial package in a period of seven days or less. In this article, the methodology of using the ARC® to obtain ADT₂₄ and SADT values are described together with the correction procedures of the ARC® data.

はじめに

ARC® (Accelerating Rate Calorimeter)は、世界的 にみても最も広く使用されている断熱熱量計である。 測定原理は、まず、容量約9cm3の球形の金属製容 器内に数gの固体もしくは液体試料を仕込み、熱電 対と圧力センサーを取り付ける(第1図)。これを装 置に接続したのち、室温付近から適当な温度ステッ プ(通常5 間隔)で自己発熱の探索を行う。この一 連の操作を加熱、待機、探索と呼び、自己発熱を検 知するか、測定可能上限温度(約400)に達するま で自動的に繰り返し実行される。制御装置に内蔵さ れたアルゴリズムにより自己発熱を検知した場合は、 自動的に断熱制御に入る。断熱制御とは、雰囲気温度 が試料容器温度に追随するように自動制御することを いう。すなわち、試料が発熱する間、雰囲気温度は 試料温度とほぼ等しく保たれながら上昇していくため、 試料には一切外部から熱が加わらない。これが自己 発熱と称する所以である。断熱条件(系と雰囲気間で 熱移動が無い状態)は、火災等による外部入熱条件 を除けば、プロセスの最悪の状態と考えられる。この ように、ARC®の最大の特徴は、密閉試料容器内で 試料を断熱的に分解させ、しかも、測定条件をうま く調節すれば分解反応を完結できる点にある。

ARC® が反応性化学物質等の熱暴走危険性評価に有

効な断熱量計であることは、すでに世界的に実証されており、関連する文献の数は数百にのぼる。特に、実際に発生した事故の挙動をモデル化するために適用された事例が多く、事故の未然防止という観点からみても、実装置の安全対策検討に際して、以下のような非常に有用な情報を与えてくれる。実際、ASTM(米国材料試験協会)のE-27委員会によって、標準試験法の一つとして規定されている1)。


- ・不純物の触媒作用や安定剤の減少による発熱開始 温度の低下
- ・TMR(暴走までの残り時間)に基づいた滞留時間、 運転温度、警報・インターロック設定温度等の決定
- ・熱暴走、分解時の最大ガス発生速度の推定
- ・外部火災、混触危険、自己触媒反応等の評価
- 断熱系の反応速度解析

ARC®の測定対象は、化学、医学、石油化学にとどまらず、爆薬、推進薬、リチウムイオン電池等の分野への応用が広がっている。ARC®の概要、および関連する断熱系の理論式や測定、評価例については、当社に初めて導入された直後の1989年に詳しく紹介した20。本稿では、その後の検討結果を含め、ARC®測定データを実際のプロセスに適用する場合に参考となる項目について紹介する。

ARC®にも問題はあり、現時点では完璧に機能する攪拌装置が開発されていないため、試料内に温度

分布が生じるとともに、多相に分離する試料では測 定結果に影響を及ぼす可能性がある。また、高精度 の断熱制御を実施しているため、定期的な熱電対の 更新や校正等を含め日常の点検、整備が非常に重要 になる。なお、ARC®は当初、米国CSI社が製作、 販売していたが、その後同社は解散し、現在は米国 ADL 社等が事業を引き継いでいる。

第1図 ARC®概略図

測定データの 補正方法

ARC®では、耐圧に優れる金属製試料容器を使用 するため、試料容器の熱容量が無視できなくなり、 試料の発熱の一部は試料容器を加熱するために消費 される。したがって、測定データを実装置に適用する 際には、データを補正して試料容器の影響をなくす (= 1 に補正する)ことが必須である。ここで は、 次式で定義される熱補正係数である2)。

M:質量(g) Cp:定圧比熱(J·g⁻¹K⁻¹)

添字 ※:試料容器 添字8:試料

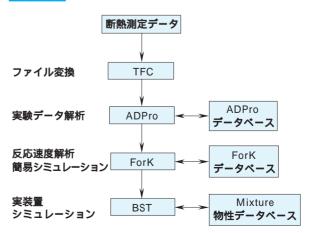
海外の報告書では、実測値をそのまま記載してい ることが多いので、それらを参考にする場合は注意を 要する。以下に、当社で採用している 補正方法を 示す。

- 1. Huff 法による 補正^{3,4)}
 - ここでは主に以下の仮定を用いている。
- ・試料容器外面の境膜伝熱係数は小さく、また、断 熱制御により試料容器表面温度と雰囲気温度の差 が小さいため、試料容器から雰囲気への熱損失は 無視できる
- ・密閉試料容器を使用するため、蒸発による熱移動 は分解熱に比べて小さいから無視できる

- ・見掛けの活性化エネルギーは、着目している反応 率の範囲、および温度範囲で一定とする
- ・初期濃度が与えられれば、濃度項は反応率のみの 関数となる。任意温度での反応率は、その温度まで の断熱温度上昇/全断熱温度上昇となる。これに より濃度変化は温度変化に変換できる
- ・定容比熱の代わりに、定圧比熱を用いた誤差は無 視できる

具体的な補正手順と関係式は別報を参照された い5)。圧力の補正も同様の手順で可能であるが6)、 当社では、発生圧力の評価には後述する BST を使用 している。

本補正方法を適用する際の注意点としては、

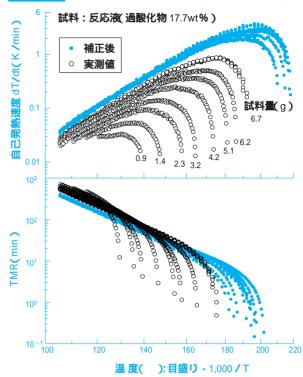

- ・ ARC® の実測温度上昇速度が約10K/min(断熱制 御用ヒーターの限界)を超える部分については、 補正結果の信頼性はない
- 補正後の温度が測定温度範囲を超える部分は、反 応機構が変化しないということが判明している場合 にのみ適用できる
- ・活性化エネルギーを一定と仮定しているが、複数 の反応が重畳する系では、それぞれの活性化エネ ルギーが異なるため補正結果に誤差が生じる
- ・試料量が少ない場合のように、補正が大きくなる と誤差も大きくなる

2.反応速度解析による 補正7)

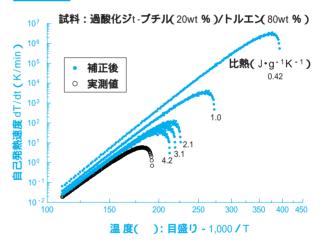
最近、プロセス安全に着目した反応速度解析を、 パーソナルコンピューターで実施できるソフトが各種 市販されている。そのうち、ロシア ChemInform 社 製ソフトは、相互にデータを共有できる複数のソフト で構成され、① 実験データの解析、② 反応速度解 析、③ 実装置シミュレーションという一連の操作を 効率的に実施できる。本稿で紹介する機能を第2図

・TFC(text file converter): 測定データを、解析

第2図 ChemInform社製ソフトの構成

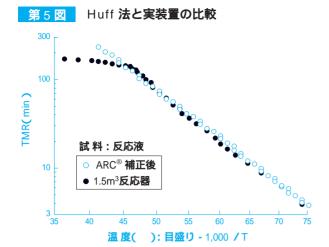

で使用するファイル形式に変換する

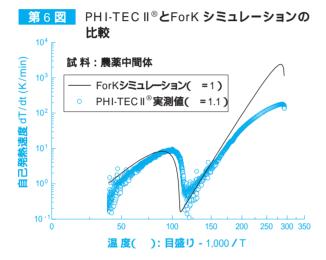
- ・ADPro(adiabatic data processing): ARC®等の 断熱熱量計測定データを解析する。まず、封じ込め られた初期雰囲気ガスの熱膨張圧力を削除する。 次に、探索区間(自己発熱を検出するまで)のデータをlog(P)対1/Tでプロットし、直線回帰した ときの切片と傾きから試料の見掛けの蒸気圧と蒸発 潜熱を決定する。実測した圧力データからこの蒸 気圧を引けば、分解による発生ガス量およびガス 発生速度を決定できる
- ・Fork(formal kinetics): 簡易反応速度解析と簡易シミュレーションの二つの機能を有する。変数は反応率で、物質、濃度等を特定する必要はない。まず反応スキームを、独立反応、併発反応、逐次反応を組み合わせて記述し、それぞれの反応について、N次反応、自己触媒反応、触媒反応から選択する。ただし、反応は液相均一反応とする。次に、ADProから転送された実測データに対して、非線形最適化(収束計算)を実行して反応速度パラメーターを決定する。一方、簡易シミュレーションの機能より、ARC®の測定条件(および実測時の値)を入力すれば、ARC®実測データと比較して最適化結果を検証できる。また、 = 1を入力すれば 補正が可能である
- ・BST(batch stirred tank): 暴走反応をシミュレーションする。 攪拌槽を想定して実装置の熱暴走、圧力発生挙動をシミュレーションできるほか、AIChE / DIERS 手法⁸⁾ に準拠した気液二相流放散を考慮した破裂板や安全弁の口径計算、および下流配管の設計が可能である。計算に必要な物性は、内蔵物性データベースによる


3. 補正例と検証データ

Huff 法による補正例を示す⁹⁾。試料は、単純な分 解挙動を示す過酸化物系反応液で、過酸化物濃度 は17.7wt %である。試料量が 補正に及ぼす影響を 見るために、6.7 ~ 0.9g の8 段階に変化させて測定 した。このときの 値は、1.28~3.68である。自己発 熱速度およびTMRの実測値と 補正結果を第3図に 示す。補正に際して試料の比熱を2.1 J·g - 1 K - 1、反 応次数を1とおいた。高温部分でのわずかなずれを 除けば、試料量の影響をうまく排除できている。第4 図は、過酸化ジt-ブチル20wt % / トルエン80 wt % (試薬)について、反応次数を1とおいて、試料比熱を 0.42 ~ 4.2 J·g - 1 K - 1 の範囲で5 段階変化させて補正 した結果である⁹⁾。比熱が2.1 ~ 4.2 J·g ⁻¹ K ⁻¹ の範 囲では補正結果に及ぼす影響は小さいが、比熱が 2.1 J・g -1 K -1 を下回ると比熱算定誤差の影響が大き くなることがわかる。

第3図 Huff法による補正結果(試料量の影響)



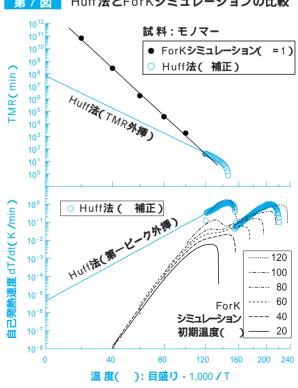

第4図 Huff法による補正結果(比熱の影響)

また、過酸化物系反応液について、パイロット反応器での暴走実験とHuff法による補正結果を比較した。反応器容量は1.5 m³で、反応温度は35 である。所定の反応終了後、酸性触媒を中和しない状態で、ジャケット加熱により内温を45 まで上昇させて暴走反応を発生させた。温度記録から求めた実装置のTMRと、同じ反応液(油相、水相混合物)について、ARC®で測定したデータを補正した結果を比較して第5図に示す。全般に両者の一致は良好である。35~45 にかけて、実装置のTMRが小さくなっている理由は、ジャケット加熱により、断熱ではなく外部入熱条件になっているためである。

一方、第6図は、農薬中間体の反応原料混合物を、

1 時間等温エージングしたのち、2.5 ステップで探索した測定結果である。ここでは、Forkを用いた反応速度解析による 補正結果と、同一試料について

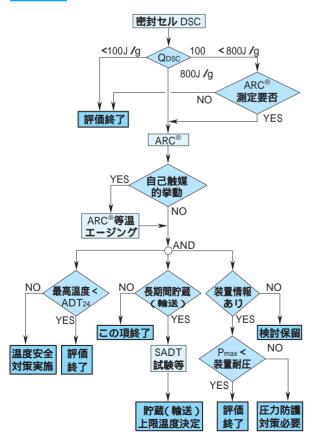
がほぼ1の条件で測定できる断熱熱量計PHI-TEC II® 8)の測定結果を比較した。図には補正結果のみ示したが、ARC®実測値では二つのピークは完全に分離している。反応速度解析に際しては、第一ピーク(目的の反応)と第二ピーク(生成物の分解反応)を逐次反応と考え、いずれもN次反応と仮定した。図より、分離したピークの挙動をうまく補正できている。第二ピークの発熱速度が大きい領域でのずれは、PHI-TEC II® の断熱制御用ヒーターの限界(最大約100 K/min)によるものである。


このように、ARC®の 値が大きい(試料容器に熱が奪われる)という欠点は、逆に利点ともなり得る。 すなわち、

- ・発熱速度が大きい試料でも、実測最大発熱速度が ヒーターの限界内に収まるように試料量を少なくすれば、反応を断熱的に完結できる
- ・発熱量が大きい試料でも、実測最大断熱到達温度 が測定可能上限温度以内に収まるように試料量を 少なくすれば、反応を断熱的に完結できる

- ・のちの反応速度解析を容易にするため、試料量を 少なくすることにより複数のピークを分離できる 逆に、PHI-TEC II® のように がほぼ1の条件で測 定できる装置の利点としては、
- ・ヒーターの能力範囲であれば、実装置をスケール ダウンした条件にて最大発熱速度、および最大圧 力上昇速度を実測できる
- ・測定可能温度範囲であれば、実装置条件にて断熱 温度上昇を実測できる
- ・高温域で別の反応が生じないかチェックできる
- ・ARC®や、他の実験装置を用いて推定した反応速度モデルを検証できる

最後に、液体モノマー(重合禁止剤を含む)につい て、Huff 法から求めたTMR と、反応速度解析から 求めたTMR を比較した。ARC® 測定雰囲気は空気と し、24 時間の等温エージング後に5 ステップで探 索した。第7図は、Huff法による 補正後のTMR外 挿線と、反応速度解析から求めたTMR(= 1)を比 較した結果である。反応速度解析では、Fork を用い て、初期温度を20~120 まで20 刻みで断熱シミ ュレーションし、各初期温度におけるTMR を求めた。 ARC® 発熱検出温度(121)以下での両者のずれが 大きい。これは、自己発熱速度で比較した図を見ると、 Huff 法による第一ピーク外挿線が、低温側での自己 発熱速度を過大評価しているため TMR が小さく出た ものである。すなわち、Huff 法で求めたTMR は、測定 温度範囲では十分精度があるものの、低温側へ外挿 する際には特別な注意を払う必要があることがわかる。


ADT24(安全面でのプロセス上限温度)

当社が採用している熱安定性評価手順を第8図に示す10)。ここで、ADT24は、ARC® 補正データ(低温側へのTMR外挿線)において、TMRが24時間となるときの温度で、この温度を安全面でのプロセス上限温度と考える。最高温度(最高操作温度、または加熱媒体温度の高い方)が、ADT24より低い場合は評価を終了する。ただし、滞留時間が24時間に近いか24時間を超える場合は、最高温度をADT24より少なくとも20 低くするとともに、その温度におけるTMRが滞留時間より大きいことを確認しておく。一方、最高温度がADT24より高い場合は、以下のような温度面での安全対策を検討する。

- ・加熱媒体の温度を下げる
- ・冷却コイルやジャケットを設置して操作温度を下 げる
- ・希釈溶媒を、より沸点の低いものに変更して蒸発 潜熱による冷却効果を期待する

最高温度がADT24より高く、しかも分解エネルギーが大きい場合はプロセスの変更を検討する必要がある。ただし、薄膜蒸発器のように高温での滞留時間が数分の場合は、ADT24より高い温度でも許容されるが、濃縮後の液をすぐに冷却することが必須である。数週間~数か月の長期間にわたって貯蔵しなけ

第8図 熱安定性評価フローチャート

ればならない場合は、断熱測定から求めたADT24の概念は適さず、等温貯蔵試験を実施して安全な貯蔵温度を決定する必要がある。また、製品を輸送する場合は、後述する包装品のSADT(自己加速分解温度)を把握しておく。

一方、装置情報(液量、空間容積、耐圧等)が判明 している場合は、ARC®測定データとBSTを用いて 実装置条件での最大発生圧力Pmaxを推定する。こ の値が、装置耐圧を超える場合は、圧力防護対策を 検討する必要がある。装置情報が不明の場合は、それ らが明確になるまで検討を保留する。

1. ADT24 **の推定方法**

ARC等の断熱熱量計を使用せず、密封セルDSC の測定データからADT24を推定できる簡略法を示す¹¹⁾。ここでは、0次反応を仮定した次式²⁾に、E = 50 kJ/mol、qa = 20 mW/g を代入してTMR(min)を計算する。

$$TMR = C_{PS} \cdot R \cdot T^{2} / (60 \cdot q_{O} \cdot E)$$

$$q_{O} = q_{O} \cdot \exp[(E/R) \cdot (1/T_{O} \cdot (1/T_{O}))]$$
(2)

R : **気体定数(** kJ·mol⁻¹ K⁻¹)

T :絶対温度(K)

E : **活性化エネルギー** (kJ/mol)

Ta: DSC 発熱開始温度(ベースラインから立ち上がり始 める温度)(K)

qa: Ta における発熱速度(DSC 発熱検出限界)

小さめの活性化エネルギーと 0 次反応の仮定により、この計算値は安全側の結果を与える。発熱開始温度を決定する際に、発熱ピークの直前に融解等の吸熱ピークが重量し、両者が明確に区別できない場合は、安全をみて吸熱ピークのピークトップ温度をTa とする。

断熱測定によるADT24 と区別するために、DSC 測定データから推定したADT24 をT24 とおく。(2)式に T = T24、TMR = 1,440min を代入し、実験データで回帰分析した結果、次式を得た。相関係数は0.9998であった¹¹⁾。

$$T_{24} = 0.65 \, \text{Ta} + 50$$
 (3)

ただし、DSC はガラス製またはステンレス製密封 セルを用いて、3 K /min の昇温速度で測定している。 参考までに、いわゆる100 ルールを次式に示す。

$$T_{24}$$
 T_{a} - 100 (4)

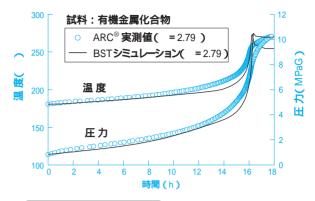
(3)式の妥当性を検証するために、試料量200gの 断熱デュワー瓶 (発熱検出限界0.1 mW/g)を用い て、180の試料についてADT24を測定している¹¹⁾。 得られたADT24を、同じ試料をDSCで測定して求め たTa に対してプロットすると、対象としたTa = 50

~420 の全温度範囲において、すべてのADT24の値は(3)式より上にプロットされた。これは、T24の計算値が、常にADT24より小さくなることを示している(安全側)。一方、100 ルールの場合は、高温領域で8点(クロロアニリン系の高沸物)が(4)式より下にプロットされ、100 ルールの適用限界が実証された。

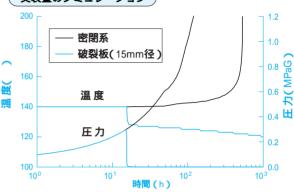
ドイツの指針では、ADT24-10 、もしくは To.1-10 を安全な最高操作温度と規定している¹¹⁾。ここでTo.1は、発熱速度が0.1mW/g のときの温度である。断熱デュワー瓶試験結果を反応速度解析して To.1を求め、ADT24と比較した結果、To.1はADT24よりかなり安全側すぎる基準であり、To.5の方が ADT24によく一致した¹¹⁾。しかし、この結果を広く適用するためには追加の検討が必要であると結論づけている。芳香族ニトロ化合物等の発熱分解時の、ADT24の実測値に及ぼす置換基の影響を第1表に示す¹²⁾。

第1表 典型的なADT24実測値¹²⁾

グループ	芳香環へのさらなる置換基	ADT24 ()
- NO ₂	-	280
- NO2	- Cl、 - F	270
- NO2	- NH -	220
- NO ₂	- アルキル基	200
- NO2	- 0 -	190
C - O - O -		80
- N = N -		280
- NH - NH ₂		220
= NOH		110
- N N +		80


当社では、ADT24以外にも、参考値としてTARCを採用している。TARCとは、ARC®で実測した発熱検出温度そのものではなく、補正後の自己発熱速度を低温側へ外挿し、0.02 K/min(ARC®の発熱検出限界)を示すときの温度と定義する。これは、試料比熱を2.1 J・g -1 K -1 と仮定したとき、約0.7 mW/gの発熱速度に相当する。

2. 適用例


有機金属化合物等では、ARC®に試料を仕込む際に空気との接触を避ける必要がある。このため、不活性ガスで置換したパキュームグローブボックスの中に、圧力センサーを取り付けたARC®上蓋を搬入して、試料容器を取り付ける等の特別の工夫が必要である。第9図は、この種の物質のARC®測定データについて、Forkで決定した反応速度パラメーターを検証するために、BSTを用いてARC®測定条件(密閉系)でシミュレーションした結果である。時間、温度、圧力

第9図 BST シミュレーション

ARC®**測定条件の**シミュレーション

実装置のシミュレーション

ともに、実測値をよく再現しているといえるため、引き続き実装置のシミュレーションを実施した。なお、Fork シミュレーションで求めたADT24 は165 となった(Huff 法外挿 ADT24 は163 。ちなみにTARCは173)。いまの場合、滞留時間が24 時間を超えるため、安全をみてプロセス上限温度を140 に設定した。140 におけるTMR は548 時間で滞留時間より大きい。

初期温度140 、初期圧力59kPaG(蒸気圧)として、断熱下での実装置(容積420ℓ)の圧力挙動をBSTでシミュレーションすると、図に示すように、密閉下でのPmax は装置の耐圧をはるかに超えた(ただし、時間軸は対数目盛りで示した)。そこで、圧力防護対策として、設定圧力300kPaGの破裂板の設置を検討した。断熱条件下でのBSTシミュレーションに際して、装置内で発生する気液二相流の形態はチャーン乱流と仮定し、破裂板の下流配管長は約20m、背圧は大気圧とした。破裂板の口径を15mmとした場合の計算例を第9図に示した。

SADT

自己反応性物質や有機過酸化物は、長期間高温に さらされると反応が徐々に進行し、反応熱が蓄積し て熱爆発に至ることがある。SADTは、実際に輸送 される包装品中の物質が、1週間またはそれ以内に自己加速分解を起こす最低の雰囲気温度として定義される。SADTには、雰囲気温度、反応速度、包装の大きさ、物質および包装材料の伝熱特性等が影響する。SADTの高い物質は熱安定性がよい。国連の危険物輸送に関する勧告によれば、自己反応性物質に該当するのは、50kg包装品のSADT 75 の物質である。また、SADT 55 の自己反応性物質、およびSADT 50 の有機過酸化物については、第2表のような温度制御が必要と定めている¹³⁾。

第2表 SADT **に応じた温度管理** ¹³⁾

SADT		Т	管理温度(温度制御)	警報設定温度	
20			SADT - 20	SADT - 10	
20	<	35	SADT - 15	SADT - 10	
	> 35		SADT - 10	SADT - 5	

国連では、包装品、コンテナ、およびタンクに応じて米国式SADT試験、オランダTNO式断熱貯蔵試験、ドイツBAM式蓄熱貯蔵試験等を定めているが、次に示すような実施上の制約が多い。

- 比較的大量の試料を扱うため(400 cm³ ~ 220ℓ)
 試験装置が破壊したときの危険性が大きい
- ・発生する可燃性ガスに着火する危険性や、有害な 分解ガスが発生することによる環境への影響が懸念 される
- ・測定には1回当たり最大で1週間を必要とし、自己発熱を検出するまで5 刻みで繰り返し実施する 必要がある
- ・試験終了後の試料は変質して、より不安定かつ鋭感になっている可能性があるため、速やかに処分する必要がある
- ・SADTが未知の試料を試験場所まで運搬する必要がある
- ・ 測定のためにいくつかの商業包装品を犠牲にする必要がある
- ・試験費用が高価なうえ、試験施設が限られている このため、少量の試料を用いて比較的短時間に測 定できる各種熱量計測定データから、SADTを推定 する方法が紹介されているが、ここではARC®に限定 して示す。

1. Semenov モデル

ARC®**測定データから**SADT**を計算するには、通常、** 次式を使用する²⁾。

$$SADT = TNR - (R \cdot TNR^2/E)$$
 (5)

ただし、TNR はSemenov モデルにおける熱暴走限界

温度であり、ARC[®] 補正データ(低温側へのTMR 外挿線)において、TMR = のときの温度として求まる。 (min)は包装品の時定数で、次式で計算する。

$$= Ms \cdot C_{PS} / (60 \cdot U \cdot S) \tag{6}$$

U:総括伝熱係数(W·m⁻²K⁻¹)

S: 伝熱面積(m²)

ARC[®] 外挿線を使用せず、解析的にSADTを計算することもできる 14)。次式で c=1 /e が限界条件となる。

V :容積(m³)

W:分子量(g/mol)

H:分解熱 (J/g)

A:頻度因子

c: Semenov モデルにおける熱発火限界パラメーター

e :自然対数の底 = 2.7183

Te:雰囲気温度(K)

この方法の欠点として、ARC®発熱検出温度とSADTの間で融解が生じたり(過酸化ラウロイル、アゾジイソブチロニトリル等)、反応機構が変化する場合(アセチルアセトンペルオキシド等)は、SADT推算の精度が低下する。また、t・ブチルヒドロペルオキシド(70wt%)のように、沸点がSADTより低い場合は、標準のSADT試験では蒸発潜熱による冷却が分解熱に勝って暴走は生じず、この挙動をARC®データから推定することはできない。さらに、アゾジカルボンアミドのように、複雑な分解や、自己触媒的分解を生じる場合は、ARC®データを低温側に外挿するのは困難となる。

改善策として、SADT以上の温度で測定したARC®データと、SADT以下の温度で測定した高感度等温熱量計(例えばTAM®: Thermal Activity Monitor)のデータでSADTを挟み込む方法が紹介されている¹⁵⁾。計算手順は別報を参照されたい⁵⁾。ARC®のみから推定したSADTと本法で推定したSADTを、米国式SADT試験と比較した結果を第3表に示す¹⁵)。一方、反応物の消費は、次式の補正項を導入することで表現できる¹⁶⁾。

$$c = [e \{1 - 2.52 \{N/B\}^{3}\}]^{-1}$$
 (8)

B:無次元断熱温度上昇=[E/(R·Te²)]·(H/CPS)

N:反応次数

log(c)対 Te 上に(7)式と(8)式をプロットしたとき、両者の交点の温度がSADTを与える。

2. Frank-Kamenetskii モデル

米国式 SADT 試験は、高粘性の液体、ペースト状の物質や固体に対しても適用できる。一方、Semenov モデルに基づいた SADT 推定方法では、系内の温度

第3表 SADT 推定値と実測値の比較 15)

試料	包 装	米国SADT試験実測値()	ARC® 推定値()	ARC®とTAM®による推定値()
t-ブチルペルオクトエート(100%)	25 ℓ	39	35	38
アセチルアセトンペルオキシド	25 kg	64	54 *	52
過酸化ラウロイル	25 kg	49	45 *	46
t-プチルペルペンゾエート	25 kg	57	53	62
過酸化ジ t - プチル	25 kg	90	88	83
アゾジカルボンアミド	50 kg	115	130 *	109
ジクロロイソシアヌル酸ソーダ二水和物	135 kg	65	45	58
	45 kg	65	51	61
アゾジイソプチロニトリル	25 kg	50	60	48
2,2 'アゾピス(2-メチルプチロニトリル)	25 kg	50	36 * *	48

*:修正値1) **:融点のため外挿不可

を均一と仮定しているため攪拌された低粘性液体にしか適用できない。系内の温度分布を考慮したFrank-Kamenetskii モデルにおける熱発火限界パラメーター c は次式で表される¹⁶⁾。

反応物の消費を考慮し、さらに、包装表面の断熱 材の熱抵抗も考慮した場合の限界条件は次式で表される¹⁶⁾。

$$c = /[e\{(1/Bi)+(1/Bi)\}]$$

$$\{1 - 2.52 \cdot (N/B)^{3/3}\}$$
(10)

Bi : **ビオ数 =** h・r /

h :境膜伝熱係数(W·m⁻²K⁻¹)

:形状係数 = r · S / V

ただし、Bi は、断熱がない場合のビオ数(系内と表面の伝熱抵抗の比)で、無限平板で2.39、無限円筒で2.72、球で3.01とする。形状係数は第4表の値をとる。log(c)対Te上に(9)式と(10)式をプロットしたとき、両者の交点の温度がSADTを与える。本法を、200ℓドラム缶に保管した粘性のある合成樹脂227kgに適用した例を、米国式SADT試験結果と比

第4表 形状係数 16)

	包装形状	形状係数
無限平板		1.0
球		3.0
無限	円筒	2.0
等長	円筒(L = 2r)	2.78
有限円筒	天板と底板から放熱 (L > 2r)	2.0 + 0.78(2r / L) ²
	天板か底板の一方から放熱(L>2r)	2.0 + 0.195(2r / L) ²
	天板と底板から放熱 (2r > L)	0.88 + 1.90(2r / L) ⁻²
立方体		2.52
直方体		0.825 •[1.067 +(x/y) +(x/z)

r : 半径もしくは厚さの半分 (m)

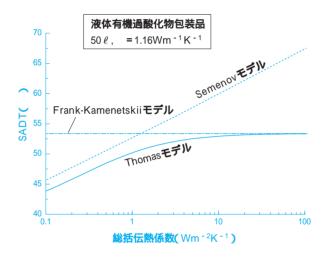
L:円筒の長さ (m)

x , y , z : 直方体の寸法(x が最短寸法)(m)

較して第5表に示す¹⁶⁾。Frank-Kamenetskii モデルはS/V比が小さな系に適している。

3. Thomas モデル

Semenov モデルは、系内の温度分布を均一と仮定し、包装表面の対流伝熱のみを考えた。一方、Frank-Kamenetskii モデルでは表面温度を雰囲気温度と等しくおき、系内の伝導伝熱のみを考えた。いずれも両極端の解であり、系内、表面両方の伝熱を考慮する理論としてThomas モデルがある¹⁷⁾。Thomas モデ


第5表 ARC® **からの**SADT **推定例** 16)

±-8	料	Semenov モデル		Frank-Kamenetskii モデル		
試		条件	SADT()	条件	SADT()	
樹脂1	粘度 3,350 mPa・s	消費無視	FC 0	無限円筒・消費無視・断熱なし(c = 2.0)	34.1	
		(c = 0.3679)	56.0	有限円筒・消費無視・断熱なし(c = 2.090)	34.6	
	米国 SADT 試験	消費考慮	70.0	有限円筒・消費考慮・断熱なし(c = 7.100)	48.5	
	実測値 49	(c = 1.7486)	76.8	有限円筒・消費考慮・断熱あり(c = 6.008)	46.5	
樹脂2	粘度 29mPa⋅s	消費無視	72.5	無限円筒・消費無視・断熱なし(c = 2.0)	49.3	
		(c = 0.3679)	72.5	有限円筒・消費無視・断熱なし(c = 2.090)	49.8	
	米国 SADT 試験	消費考慮	05.0	有限円筒・消費考慮・断熱なし(c = 4.606)	59.2	
	実測値 71	(c = 0.9289)	85.2	有限円筒・消費考慮・断熱あり(c = 3.938)	57.3	

ルはすべての固体と大部分の液体(静止液体、攪拌された粘性液体)に適用できる。

ここで紹介する計算方法は、固体を仮定しているため、対流、放射の影響は無視している。しかしこれらを考慮するとSADTは高めになるので、液体に適用しても安全側の結果を得る。計算手順と計算式は別報を参照されたい 5)。第10 図は、液体有機過酸化物($=1.16\,\mathrm{W\cdot m^{-1}\,K^{-1}}$ 、密度 $=436\,\mathrm{kg\,/m^{3}}$)の $50\,\ell$ 包装品に対する SADT の計算結果であるが、総括伝熱係数の値を変化させてその影響をみている。ただし、等長円筒と仮定し、第4表の $=2.78\,\mathrm{kJ}$ 表面積を計算した。図より、Thomas モデルは常に最も安全側の結果を与えるため、一般の用途に適することがわかる。

第 10 図 ARC®データから推定したSADT

おわりに

本稿に示したARC®測定データの補正方法、ARC®測定データに基づいた安全面でのプロセス上限温度やSADTの決定方法は、数多く開発されている手法の一例を紹介したにすぎない。これらの手法を実装置へ適用する際には、その適用限界を事前に十分把握しておくとともに、常に最新の情報を入手してさらなる改良を検討していく必要がある。さらに、これらの手法を活用する以前に、ARC®の測定条件、測定結果等が、評価目的に合致したものであるかを十分吟味しておく必要がある。なお、(株)住化分析セ

ンターでは、対外的にもARC®を含む広範囲な危険 性評価試験の受注業務を行っており、ご利用してい ただければ幸いである。

引用文献

1) ASTM: E1981-98, 1998

2) 菊池 武史:住友化学, 1989-I, 61(1989)

3)J. E. Huff: *Plant/Ope. Prog.*, 1(4) 211(1982) 4)J. E. Huff: *Plant/Ope. Prog.*, 3(1), 50(1984)

5)菊池 武史:安全工学, 40(2), 100(2001)

6) J. Singh: J. Loss Prev. Process Ind., 7(6), 481(1994)

7)CISP: User & Guide, Russia (1998)

8)菊池 武史:住友化学, 1995-I, 101(1995)

9) 菊池 武史: 第1回ARC ユーザーミーティング, 神 奈川県工業試験所, Oct.14, 1994

10)菊池 武史:住友化学, 1999-I, 51(1999)

11)A. Keller et.al.: *J. Loss Prev. Process Ind.*, 13 (1), 7(2000)

12)T. Grewer et.al.: *J. Loss Prev. Process Ind.*, 12 (6), 391(1999)

13 JUN: Recommendations on the Transport of Dangerous Goods; Manual of Tests and Criteria, 2nd ed. (1995)

14)H. G. Fisher and D. D. Goetz: *J. Loss Prev. Process Ind.*, 4, Sep., 305(1991)

15)M. W. Whitmore and J. K. Wilberforce: J. Loss Prev. Process Ind., 6(2), 95(1993)

16)H. G. Fisher and D. D. Goetz: J. Loss Prev. Process Ind., 6(3), 183(1993)

17) S. Mores, P.F. Nolan and G.O, Brien: *IChemE Symp. Series*, No.134, 609(1994)

PROFILE

菊池 武史
Takeshi Kikuchi
住友化学工業株式会社
生産技術センター
主席研究員