SUMITOMO CHEMICAL

Ultra-High Heat Resistant Engineering Plastics

High heat Resistant Amorphous Polymer

Proper Use of SUMIKAEXCEL PES

The information contained in this document has been prepared based on materials, information and data currently available and is subject to revision based on new findings.

1. Handling

The following is a list of key points that must be observed when handling SUMIKAEXCEL PES. Before handling SUMIKAEX-CEL PES, please be sure to read the Safety Data Sheet (SDS), which has been prepared separately. Please note that it is the responsibility of the user to investigate the safety of any additives used in conjunction with SUMIKAEXCEL PES.

(1) Safety and Health

Ensure to avoid contact with the eyes and skin, as well as the inhalation of gases that are generated when drying and melting SUMIKAEXCEL PES. In addition, be careful not to directly touch the resin while it is still hot. Local ventilation equipment must be installed and proper protective gear (such as protective goggles and protective gloves) must be worn while drying or melting this product.

(2) Flammability

SUMIKAEXCEL PES is a flame-resistant material (classified as UL94 V-0). However, it should be handled and stored in places well away from heat and ignition sources. If the material catches fire, toxic gases may be released. Use water, foam, or fine chemical extinguishers to extinguish any flames.

(3) Disposal

SUMIKAEXCEL PES may be disposed by burial or incineration. Burial of the material should be conducted by certified industrial waste processors or by the local municipal authorities in accordance with the Waste Management and Public Cleansing Act. Incineration should be conducted using a furnace which complies with the laws and regulations of the Air Pollution Control Act. Toxic gases may be released when this product is incinerated.

(4) Storage

Store SUMIKAEXCEL PES at room temperature away from direct sunlight, water, and humidity.

2. Applicable standards

SUMIKAEXCEL PES comes in a variety of grades which comply with standards specified by Underwriters Laboratories Inc., such as UL94 and UL746, and by the U.S. Food and Drug Administration (FDA). Refer to this booklet or contact Sumitomo Chemical for further details. Contact Sumitomo Chemical for information regarding the use of this material in other special applications.

3. Security Trade Control

The products of SUMIKAEXCEL and SUMIPLOY are not on the control list of the Export Trade Control Order of Japan. However, row 16 (catch-all control) in Appended Table 1 of the same Order does apply.

4. Other

All data in this document is for reference only and is not intended as guarantees on product performance. Please be aware of intellectual property rights when using this product.

SUMIKAEXCEL PES Tec	hnical Notes Index
---------------------	--------------------

1. Features and Grade Lineup of SUMIKAEXCEL PES 1-1 Features	03 03
1-2 Grade Lineup	05
2. Table of Physical Properties	07
3. Physical Properties	09
3-1 Heat Resistance	09
3-2 Mechanical Properties	12
3-3 Dimensional Stabilities	17
3-4 Flame Retardancy	19
3-5 Chemical Stabilities	21
3-6 Electrical Properties	28
3-7 Sliding Properties	29
3-8 Other Properties	32
4. Injection Molding	34
4-1 Injection Molding Conditions	34
4-2 Moldability	37
4-3 Injection Molding Machine and Mold Design	41
4-4 Use of Recycled PES	44
5. Secondary Operations	45
5-1 Adhesives	45
5-2 Welding	45
5-3 Ultrasonic Welding	46
5-4 Laser Welding	46
6. PES Applications	47
6-1 Electrical and Electronic	47
6-2 Automotive and Machinery Parts	48
6-3 Other Injection Molding Applications	49
6-4 Food Contact Applications	50
6-5 Application of SUMIPLOY	51
7. Powder Applications of PES	53
8. Approvals	59

1. Features and Grade Lineup of SUMIKAEXCEL PES

1-1 Features Introduction

SUMIKAEXCEL PES (Polyethersulfone) is a heat resistant amorphous resin that Sumitomo Chemical manufactures in Japan under license from Imperial Chemical Industries PLC (ICI). The molecular structure is shown in the figure below.

Figure 1-1-1 Chemical Structural Formula of PES

SUMIKAEXCEL PES is an amber-color transparent resin with heat resistance, creep resistance, dimensional stability, flame retardancy, and hot water resistance. It was developed as a molding material for various applications, including electronic components, such as relays and burn-in sockets; IC trays; printer and copier parts; medical equipment parts and dental equipment requiring sterilization; and pagers and films for LCD substrates.

Powder grades are also available that are widely used in applications such as agents for giving toughness to epoxy composite materials for aircraft applications, heat-resistant paints, adhesives, and flat membranes and hollow fiber membranes for medical and food products.

Figure 1-1-2 Photograph of SUMIKAEXCEL PES Moldings

SUMIPLOY is a high-performance, high-heat-resistant polymer alloy compound that incorporates technologies that we have cultivated and accumulated. It is mainly based on super engineering plastics such as SUMIKASUPER LCP, polyethersulfone, and polyetheretherketone.

SUMIPLOY E is a sliding material that is composed mainly of heat-resistant polyethersulfone (PES) and SUMIKASUPER E101, and has the best sliding characteristics (with low and stable friction coefficient in a dry state and with a high limit PV value) among the sliding materials that can be used for injection molding. It does not easily cause scratches to mating materials even on soft metals such as Stainless steel (SUS) or aluminum. SUMIPLOY S is a sliding material based on PES that has good sliding properties while maintaining the mechanical and thermal properties of PES. It is good for applications requiring a certain degree of mechanical strength under relatively mild sliding conditions (low PV value). SUMIPLOY K is a sliding material based on polyetheretherketone (PEEK). It provides good sliding properties while maintaining the original excellent chemical resistance, fatigue resistance, radiation resistance, and heat resistance of PEEK. It is good for use under harsh conditions such as high temperatures and high loads.

Light transmittance

It has an excellent level of light transmittance among heat-resistant engineering plastics.

Heat resistance

Features of SUMIKAEXCEL PES and SUMIPLOY

Table 1-1-1 Features of SUMIKAEXCEL PES and SUMIPLOY

SUMIKAEXCEL	SUMIPLOY				
 High heat resistance Long-term heat resistance (180 to 200°C) Hig Heat water resistance High strength and impact resistance High strength and impact resistance High dimensional accuracy Flame retardant Low smoke, low gas emission 	gh heat resistance gh strength gh rigidity gh sliding property				

1-2 Grade Lineup

Injection Molding Grades

Standard non-reinforced grades and glass fiber reinforced grades are available, and functional grades such as sliding grades, high dimensional accuracy grades, and carbon fiber reinforced grades are also available. Functional grades are sold under the SUMIPLOY trademark.

Table 1-2-1 Injection Molding (Grades for SUMIKAEXCEL	PES and SUMIPLOY
---------------------------------	------------------------	------------------

Grade		Filler	Features		
	3600G	Unreinforced	High flow for injection molding		
	4100G	Unreinforced	Standard for injection molding and extrusion molding		
	4800G	Unreinforced	High molecular weight for injection molding and extrusion molding		
	3601GL20	20% Glass fiber reinforced	High flow for injection molding		
SUMIKAEXCEL	3601GL30	30% Glass fiber reinforced	High flow for injection molding		
	4101GL20	20% Glass fiber reinforced	Standard for injection molding		
	4101GL30	30% Glass fiber reinforced	Standard for injection molding		
	ES5340	20% Glass fiber reinforced	Ultra high flow for injection molding		
	E3010	40% E101 / Fluororesin reinforced	Unreinforced, sliding		
	FS2200	10% Fluororesin reinforced	Unreinforced, sliding		
	GS5620	40% glass fiber / Fluororesin reinforced	Sliding, high dimensional accuracy		
	CS5220	20% Carbon fiber / Fluororesin reinforced	Sliding, high dimensional accuracy		
SUMIPLOY	CS5530	40% Carbon fiber / Inorganic filler reinforced	Ultra-high dimensional accuracy		
	CS5600	30% Carbon fiber reinforced	High strength		
	CK3400	18% Carbon fiber reinforced	PEEK resin base high speed and high load sliding		
	CK3420	30% Carbon fiber / Fluororesin reinforced	PEEK resin base high speed and high load sliding		
	CK4600	30% Carbon fiber reinforced	PEEK resin base high strength		

Powder Grade

A variety of grades are available as powder grades having different values of RV (reduced viscosity), which is a guideline for molecular weight. The most appropriate grade may be selected to suit the particular application.

The following solvents can be used with PES : N-methylpyrrolidone (NMP), dimethylformamide (DMF) dimethyl acetamid, γ -butyrolactone, and a 50/50 (weight ratio) mixture of dichloromethane and 1,1,2 - trichloroethane.

Table 1-2-2 Powder Grades of SUMIKAEXCEL PES

	Beduced				Applications			
Grade viscos (RV)	viscosity (RV) ^{*1}	Compound	Painting	Functional permeable membrane	Adhesive	Film	Epoxy reinforcing agent	Carbon fiber composite material (Aircraft applications)
3600P	0.36	\checkmark	-	-	-	-	-	-
4100P	0.41	\checkmark	√	-	\checkmark	√	-	-
4800P	0.48	\checkmark	√	✓	\checkmark	-	-	-
5003PS ⁻²	0.50	-	√	-	\checkmark	-	~	-
5200P	0.52	-	-	✓	-	-	-	-
5900P	0.59	-	-	✓	-	-	-	-
5003P ⁻²	0.50	_	-	-	-	-	-	1

*1 Viscosity measured with 1(W/V)% PES dissolved in DMF

*2 Having many terminal hydroxyl groups. For example, for 5003P, it is 0.6 to 1.4 per 100 polymer repeating units.

Figure 1-2-1 Grade Lineup for SUMIKAEXCEL PES

2. Table of Physical Properties

Table 2-1 General Physical Properties of SUMIKAEXCEL PES

				SUMIKAEXCEL PES								
General Physical	Properties	Test method	Unit	3600G	4100G	4800G	3601GL20	3601GL30	4101GL20	4101GL30	ES5340	
Color				Natural/ Black	Natural/ Black	Natural/ Black	Natural/ Black	Natural/ Black	Natural/ Black	Natural/ Black	Black	
Filler				Unreinforced	Unreinforced	Unreinforced	Glass fiber	Glass fiber	Glass fiber	Glass fiber	Glass fiber	
Filler contents			wt%		0	0	20	30	20	30	20	
Physical properti	es											
Donsity		190 1192	a/cm ³	1.97	1.97	1.97	1.51	1.60	1 5 1	1.60	1 50	
Density		130 1103	g/cm	1.37	1.37	1.37	1.01	1.60	1.51	1.00	1.52	
Specific gravity	0.4 hrs is	ASTM D792	0	1.37	1.37	1.37	1.51	1.60	1.51	1.60	1.51	
rate	water at 23°C	ISO 62	%	1.0	1.0	1.0	0.8	0.7	0.8	0.7	0.5	
	MD		%	0.60	0.60	0.60	0.30	0.20	0.30	0.20	0.39	
Mold shrinkage	TD	Internal*1	%	0.60	0.60	0.60	0.40	0.40	0.40	0.40	0.60	
Mechanical prop	erties							0110				
		150 527-1 2	MPa	95	95	95	135	145	125	145	06	
Tensile strength			MDe	00	00	00	104	140	100	140	90	
		ASTM D638	IVIPa	84	84	84	124	140	124	140	104	
Tensile strain at	break	ISO 527-1,2	%	6.5*2	6.5*2	6.5*2	2.4	1.8	2.4	1.8	1.5	
Tensile elongation		ASTM D638	%	40-80	40-80	40-80	3.0	3.0	3.0	3.0	4.0	
Tensile modulus		ISO 527-1,2	MPa	2,700	2,700	2,700	7,200	9,800	7,200	9,800	8,900	
Eloxural strongth		ISO 178	MPa	130	130	130	190	210	190	210	139	
i lexulai streligtii		ASTM D790	MPa	129	129	129	172	190	172	190	138	
		ISO 178	MPa	2,600	2,600	2,600	6,600	9,500	6,600	9,500	7,200	
Flexural modulus		ASTM D790	MPa	2,600	2,600	2,600	6,000	8,400	6,000	8,400	7,600	
	Unnotched	ISO 179-1/1eU	kJ/m ²	NB*3	NB*3	NB*3	45	55	45	55	19	
Charpy impact strength	Notched	ISO 179-1/1eA	kJ/m ²	6	7	8	5	6	6	6	4	
	Unnotched	ISO 180/111	k.l/m ²	NB*3	NB*3	NB ^{*3}	30	35	30	35	15	
	Notohod	100 100/10	k 1/m ²	7	0	0	50		00		10	
Izod impact strength	I lan stale a d	130 160/TA	KJ/III	/	0	0	0	6	0	0	4	
	Unnotched	ASTM D256	J/m	NB*3	NB*3	NB*3	431	539	431	539	186	
	Notched		J/m	85	85	85	80	81	80	81	0	
Rockwell hardness	M scale	ISO 2039-2	0	95	95	95	100	100	100	100	89	
Thermal properti	es											
Deflection	1.80MPa	- ISO 75 - ASTM D648	°C	205	205	205	221	221	221	221	211	
temperature	0.45MPa		°C	214	214	214	222	223	222	223	223	
under load	1.82MPa		°C	203	203	203	210	216	210	216	211	
	0.45MPa		°C	210	210	210	D	0	٥	D	D	
Coefficient of linear	MD (50 -150°C)	100 11070 1	10⁻⁵/K	5.5	5.5	5.5	2.4	2.0	2.4	2.0	2.0	
thermal expansion	TD (50 -150°C)	ISO 11359-1,2	10 ⁻⁵ /K	5.5	5.5	5.5	5.8	5.2	5.8	5.2	6.4	
	360°C/2 16kg		a/10min	55	25	8	17	14	9	7	26	
MFR	400°C/2 16kg	ISO 1133-1	g/10min		- 20				5	,	- 20	
Electrical property	hoo Orz. Toky		9/10/1111		u .	u	U	U	U	u		
Lieutical proper	1001			~-		~ -						
	TUUHZ	150 000		3.5	3.5	3.5	3.8	3.9	3.8	3.9	0	
Relative	1kHz	IEC 62631-2-1	0	3.5	3.5	3.5	3.8	3.9	3.8	3.9	0	
permittivity (dry)	1MHz		0	3.4	3.4	3.4	3.7	3.8	3.7	3.8	0	
	1GHz	IEC 60250	0	3.4	3.4	3.4	3.7	3.8	3.7	3.8	•	
	100Hz		٥	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0	
Dielectric	1kHz	IEC 62631-2-1	0	0.002	0.002	0.002	0.002	0.002	0.002	0.002	D	
(dry)	1MHz		0	0.004	0.004	0.004	0.004	0.003	0.004	0.003	٥	
	1GHz	IEC 60250	0	0.004	0.004	0.004	0.004	0.003	0.004	0.003	0	
Dielectric strenath	(1mm)	IEC 60243-1	kV/mm	43	43	43	39	38	39	38	0	
Volume resistivity		IEC 60093	Ωm	> 1013	> 10 ¹³	> 1013	> 10 ¹³	> 10 ¹³	> 10 ¹³	> 1013	> 10 ¹³	
Arc resistance		ASTM D/05	sec	70	70	70	120-180	120,190	120,190	120,190		
Tracking registeres			380 V	10	150	10	_		150	120-100	-	
		IEC 60112	V	150	150	150		0	150	150		
-iame retardancy												
Flame retardant ra	ink	IEC 60695-11-10	class	V-0	V-0	V-0	V-0	V-0	V-0	V-0	V-0	
UL Yellow Card Fi	le No.	D	٥	E249884	E249884	E249884	E249884	E249884	E249884	E249884	E249884	
*1 Mold shrinkaga	ie mogeurod ($n = 64 mm \times$	61mm v	3mm flat toot	niaca *2 Tor	acilo viold etra	in *2 Door n	at brack				

*1 Mold shrinkage is measured on a 64mm x 64mm x 3mm flat test piece. *2 Tensile yield strain *3 Does not break

Table 2-2 General Physical Properties of SUMIPLOY

				SUMIPLOY								
General Physical	Properties	Test method	Unit	E3010	FS2200	GS5620	CS5220	CS5530	CS5600	CK3400	CK3420	CK4600
Color				Natural	Natural	Black	Black	Black	Black	Black	Black	Black
Filler				E101 / Fluororesin	Fluororesin	Glass fiber / Fluororesin	Carbon fiber / Fluororesin	Carbon fiber / Inorganic filler	Carbon fiber	Carbon fiber	Carbon fiber / Fluororesin	Carbon fiber
Filler contents			wt%	40	10	40	20	40	30	18	30	30
Physical properti	es											
Density		ISO 1183	g/cm ³	1.46	1.42	1.66	1.45	1.56	1.47	1.36	1.43	1.44
Specific gravity		ASTM D792	0	1.48	1.42	1.66	1.45	1.55	1.47	1.36	1.42	1.44
Water absorption rate	24 hrs in water at 23°C	ISO 62	%	0.7	0.9	0.7	0.9	0.5	0.8	0.1	0.1	0.1
	MD	Internel*1	%	0.92	0.60	0.14	0.18	0.09	0.10	0.18	0.16	0.13
Mold shrinkage	TD	Internal	%	0.97	0.60	0.30	0.35	0.03	0.25	0.48	0.50	0.55
Mechanical prop	erties											
Taxaila atuanath		ISO 527-1,2	MPa	35	72	117	107	135	178	197	176	231
Tensile strengtn		ASTM D638	MPa	36	77	123	112	133	176	196	173	216
Tensile strain at	break	ISO 527-1,2	%	4.0	8.6	1.6	2.3	0.6	1.5	2.2	2.0	1.9
Tensile elongation		ASTM D638	%	7.6	15.0	4.5	6.0	3.4	4.0	6.4	6.3	4.0
Tensile modulus		ISO 527-1,2	MPa	2,490	2,490	9,890	7,670	26,800	20,100	13,900	16,000	21,800
		ISO 178	MPa	71	104	172	155	206	246	305	276	339
Flexural strength		ASTM D790	MPa	64	118	159	147	162	255	290	240	333
		ISO 178	MPa	2,600	2,200	8,600	5,900	26,500	14,700	13,700	14,100	16,700
Flexural modulus		ASTM D790	MPa	2,500	2,500	8,600	6,600	18,100	15,200	12,900	12,100	18,200
	Unnotched	ISO 179-1/1eU	kJ/m ²	19	148	30	29	14	32	51	43	53
Charpy impact strength	Notched	ISO 179-1/1eA	kJ/m ²	3	6	7	4	5	5	7	5	7
	Unnotched	ISO 180/1U	kJ/m ²	14	99	24	22	14	28	40	36	43
	Notched	ISO 180/1A	kJ/m ²	4	6	7	5	6	6	7	6	7
Izod impact strength	Unnotched	ASTM D256	J/m	232	980	363	348	140	510	700	506	666
	Notched		J/m	29	78	71			59	0	69	98
Rockwell hardness	M scale	ISO 2039-2	0	57	85	91	93	89	100	111	104	110
Thermal properti	es											
	1.80MPa	- ISO 75	°C	205	204	216	214	217	219	313	311	329
Deflection	0.45MPa		°C	214	213	231	227	224	234	337	327	340
under load	1.82MPa		°C	203	203	218	210	216	217	325	324	328
	0.45MPa	ASTM D648	°C			0				0		
Coefficient of linear	MD (50 -150°C))	10 ⁻⁵ /K	5.7	5.7	1.6	1.4	0.7	0.7	1.0	0.8	0.6
thermal expansion	TD (50 -150°C)	ISO 11359-1,2	10 ⁻⁵ /K	6.0	5.8	5.1	5.5	4.4	5.0	5.4	5.8	5.7
	360°C/2.16kg		g/10min	4	17	7	15	3	11	0		0
MFR	400°C/2.16kg	ISO 1133-1	a/10min			0				7	2	1
Electrical proper	ties		<u> </u>									
	100Hz		0		0	0			0			0
Relative	1kHz	IEC 62631-2-1	0			0				0		
permittivity (dry)	1MHz	-	0			0				0		
	1GHz	IEC 60250	0	0	0	0	0	0	0	D	0	0
	100Hz		0	0	0	0	0		0	0	0	0
Dielectric	1kHz	IEC 62631-2-1	0		0	0			0	0	D	0
dissipation factor	1MHz	-	0		0	0	0		0	0	0	0
	1GHz	IEC 60250	0			0				0		
Dielectric strength	(1mm)	IEC 60243-1	kV/mm		0	0			0	٥	0	
Volume resistivity		IEC 60093	Ωm	> 10 ¹³	> 10 ¹³	> 10 ¹³			0	0	0	0
Arc resistance		ASTM D495	sec	90-100	80	0			0	0	0	
Tracking resistance		IEC 60112	V		0	0	0	0	0	0	0	0
Flame retardancy												
Flame retardant ra	ank	IEC 60695-11-10	class	V-0	V-0	V-0	0	V-0	V-0	0	0	0
UL Yellow Card Fi	le No.	D	٥	E249884	E249884	E249884	D	E249884	E249884	٥	D	D

*1 Mold shrinkage is measured on a 64mm x 64mm x 3mm flat test piece.

3. Physical properties

3-1 Heat Resistance

The thermal properties required for the design of SUMIKAEXCEL PES are shown in Table 3-1-1.

Table 3-1-1 Thermal Properties of SUMIKAEXCEL PES

			Unreinforced	Glass fiber reinforced		
Heat resistance	Test method	Unit	4100G 4800G	3601GL20 4101GL20	3601GL30 4101GL30	
Deflection temperature under load (0.45MPa)	ASTM D648	°C	210	D	D	
Deflection temperature under load (1.82MPa)	ASTM D648	°C	203	210	216	
Deflection temperature under load (0.45MPa)	ISO 75	°C	214	222	223	
Deflection temperature under load (1.80MPa)	ISO 75	°C	205	221	221	
Vicat softening point (1kg)	ASTM D1525	°C	226	D	D	
Vicat softening point (5kg)	ASTM D1525	°C	222	٥	D	

Arrhenius Plot

20 years

10years

Time

5years

1year 6months

1month

260

The temperature range where the resin can be used for a long period of time is limited by the thermal stability of the resin. According to the UL-compliant relative temperature index (RTI), the aging test continues until the observation target property value becomes half the initial value. Perform aging tests at several different temperatures and create an Arrhenius plot based on that data. An Arrhenius plot is a graph created by plotting the heat aging time (also called half-life) required for the property value to reach half the initial value against the reciprocal of the aging temperature (K).

240

Long-Term Heat Resistance

SUMIKAEXCEL PES has excellent long-term heat resistance. The following shows the relative temperature index (RTI) for SUMIKAEXCEL PES. The RTI indicates the temperature at which the impact strength (Imp) and tensile strength (Str) of the electrical properties (Elec) and mechanical properties (Mech) become half their initial values after the material is aged 100,000 hours. Generally, deterioration is more rapid for thin test pieces, so RTI evaluation for UL is performed according to the thickness of the test piece.

Grado	Thickness	RTI					
Ciade	(mm)	Elec	Imp	Str			
	0.41	-	-	-			
26000	0.75	180	170	180			
3600G	1.6	180	170	180			
	3.0	180	170	180			
	0.41	180	170	180			
41000	0.75	180	170	180			
4100G	1.5	180	170	180			
	3.0	180	170	180			
	0.30	180	170	180			
48000	0.46	180	170	180			
4800G	1.5	180	170	180			
	3.0	180	170	180			
3601GL20	0.43	180	180	180			
30010120	3.0	180	180	180			
260101.20	0.43	190	190	190			
3001GL30	3.0	190	190	190			
	0.43	180	180	180			
4101GL20	1.5	180	180	180			
	3.0	180	180	180			
	0.43	190	190	190			
4101GL30	1.5	190	190	190			
	3.0	190	190	190			

Table 3-1-2 Relative Temperature Index of SUMIKAEXCEL PES (UL746B)

Temperature Dependence of Flexural Modulus

Figure 3-1-3 shows the temperature dependence of flexural modulus. The flexural modulus shows almost no change from 100 to 200°C. It is far superior to noncrystalline polycarbonate resins and glass fiber reinforced grades of crystalline PPS resins, especially above 100°C, and belongs to the highest class of thermoplastic resins.

Figure 3-1-3 Temperature Dependence of Flexural Modulus of 4100G and 4101GL30

Aging Characteristics (in Air and in Hot Water)

Heat Aging Resistance

PES has excellent heat aging resistance property. Even after aged in air at 150°C, the strength remains stable.

Figure 3-1-4 Heat Aging Resistance of Tensile Strength, in Air at 150°C

Hot Water Resistance

When SUMIKAEXCEL PES is immersed in water (23°C) or hot water (100°C) without loading, there is almost no change in tensile strength. The impact strength of SUMIKAEXCEL PES will initially decrease when exposed to hot water (100°C), but will thereafter remain stable, maintaining a sufficiently high level of impact resistance.

Figure 3-1-5 Hot Water Resistance of Tensile Strength

Figure 3-1-6 Hot Water Resistance of Impact Strength

Steam Resistance (Steam Sterilization Resistance)

No changes to impact strength were observed as a result of cyclical tests using a steam pressure of 3.2 atmospheres (143°C) vacuum dehydration (room temperature).

However, when PES is to be used in steam, testing should be performed prior to usage at actual operating temperatures, in accordance with the specified application.

TECHNICAL NOTE 11

3-2 Mechanical Properties

Short-term deformation

Tensile strength

The stress-strain curve (hereinafter referred to as S-S curve) from the tension test for SUMIKAEXCEL PES is shown. Stress and strain are proportional until the stress reaches a certain level. When designing PES strength, it is important to remember that there are portions where the stress and strain are not proportional.

Temperature Dependence of Flexural Modulus

The heat deformation temperature is 200 to 220°C, and the continuous operating temperature is certified as 180 to 190°C by the UL temperature index. The modulus of elasticity shows almost no change in the temperature range of -100 to 200°C. It has the highest level among all thermoplastic resins, especially above 100°C.

Figure 3-2-3 Temperature Dependence of Flexural Modulus

Impact strength

SUMIKAEXCEL PES has excellent impact resistance. Izod impact strength is shown in comparison with other heat resistant resins. The unnotched non-reinforced grade does not break. Figure 3-2-6 shows the temperature dependence of the impact strength. SUMIKAEXCEL PES has sufficient impact strength even at temperatures below 0°C such as -100°C.

Figure 3-2-5 Notch Sensitivity of Impact Strength

Figure 3-2-4 Impact Resistance of SUMIKAEXCEL PES

Izod impact strength (3.2mm thickness, unnotched) (J/m)

Weld strength

With injection molding, the strength of welded areas (resin junction) becomes lower than that of the non-welded areas. The strength of the welded areas of the glass fiber reinforced grade decreases according to the amount of glass fiber. Figure 3-2-7 shows a comparison between the strength of non-welded areas and the strength of welded areas, and Table 3-2-1 shows the tensile strength of welded areas with SUMIKAEXCEL PES. SUMIKAEXCEL PES has extremely high weld strength compared to other resins. The non-reinforced grade in particular shows almost no decrease in reinforcement of welded areas and has the same strength as non-welded areas.

Weld tensile strength

Table 3-2-1 Tensile Strength of Welded Area

		(Unit : MPa)
Grade	Non-welded area	Welded area
4100G	84	81
4800G	84	82
3601GL20	124	67
4101GL20	124	68
4101GL30	140	61

Weld flexural strength

Figure 3-2-8 Shape of Moldings for Weld Evaluation

Table 3-2-2 Flexural Strength and Izod Impact Strength of Welded and Non-Welded Areas

Grade				Izod impact s	strength (J/m)			
	Flexulai Sui	engin (ivira)	Unnotched		0.25 notch			
	Non- welded area	Welded area	Non- welded area	Welded area	Non- welded area	Welded area		
4100G	140*	140*	> 1960*	2156	68	49	Molding machine	: Sumitomo Heavy Industries' Neomat N47/28 : 130MPa : 60%
4101GL20	190	110	411	117	68	29	Injection pressure Injection speed	
4101GL30	180	110	362	98	68	29	Cylinder temperature	: 340°C (4100G) 350°C (4101GL20, 4101GL30)
PPS-GF40%	170	70	166	29	49	19	Injection time Cooling time	: 10 seconds : 20 seconds

Values with * mark : Do not break

Weld strength of thin-walled moldings

Figure 3-2-9 Wall Thicknesses Dependence of Weld Tensile Strength

Improvement of Weld Strength

If the degradation of weld strength proves to be a problem during actual usage, weld strength can be improved through the methods introduced below.

Improvement by Annealing

The strength of the welded areas of the glass fiber reinforced grade can be improved by 15 to 20% through annealing treatment at a temperature range of 150 to 180°C. The appropriate annealing conditions are as follows: $150^{\circ}C \times 20$ minutes for moldings having a wall thickness of 0.5 to 1.5mm thickness; and $180^{\circ}C \times 180$ minutes for moldings having a wall thickness of 2mm thickness.

Table 3-2-3 Improvement of Weld Tensile Strength in Glass Fiber Reinforced Grades through Annealing

				(Unit : MPa)
Grada	Initial	150°C		O°C
Graue	Initial	20min	20min	180min
3601GL20 4101GL20	68	76(113%)	76(113%)	77(114%)
3601GL30 4101GL30	61	75(123%)	75(121%)	75(121%)

Percentage in parentheses indicates the comparison with the initial strength as 100%.

Improvement Through Increased Mold Temperatures

Greater weld strength can be achieved if the mold temperature is increased during the molding process. Therefore, set the mold temperature to 160 to 180°C and then observe any strength changes.

Long-Term Deformation

Creep properties

2

1.5

1

0.5

0

10

Tensile creep strain (%)

When designing parts of the appropriate strength required for actual usage, it is not adequate to rely solely upon the values derived from standard testing (e.g., ASTM) for mechanical strength and flexural modulus.

In order to determine the most appropriate design values, all potential changes that may occur in the dimensions and mechanical strength of moldings must be considered under actual operating conditions, based upon creep properties and temperature-induced changes. Figure 3-2-10 depicts the tensile creep properties of the non-reinforced grade 4800G at temperatures of both 20°C and 150°C. The non-reinforced grades of PES sustained a creep deformation of only 1% after 3 years, under a load of 20MPa at a temperature of 20°C. At 150°C, the creep deformation after 3 years remained at only 1%, under a load of 10MPa. Figure 3-2-11 shows the flexural creep properties at 150°C for glass fiber reinforced grades (3601GL30 and 4101GL30). SUMIKAEXCEL PES shows excellent creep properties compared to crystalline PPS (40% glass fiber reinforced grade).

150°C

Figure 3-2-10 Tensile Creep Properties of Non-Reinforced Grade (4800G)

Figure 3-2-12 Tensile Creep Properties of Non-Reinforced Grade (4100G)

Figure 3-2-14 Flexural Creep Properties

10²

30MPa

20MPa

10MPa

10³

104

Time (sec)

105

Fatigue Properties

Materials under loads that fluctuate over a long period of time experience fatigue fractures. The stress-life curve from a tensile fatigue test is shown. At $23\pm1^{\circ}$ C with $60\pm5^{\circ}$ RH, fatigue failure does not occur up to about 1.0×10^{7} times even with a repeated load of 30MPa.

The symbol with a right arrow (\rightarrow) indicates that the test piece has not been broken at that number of repetitions.

3-3 Dimensional Stabilities

Non-reinforced grades of PES have low mold shrinkage (0.6%) and no anisotropy. However, glass fiber reinforced grades possess anisotropic shrinkage, at 0.2% for MD and 0.4% for TD due to the orientation of GF.

Figure 3-3-1 Comparison of Mold Shrinkage

CLTE (Coefficient of linear thermal expansion)

SUMIKAEXCEL PES has a small CLTE (Coefficient of linear thermal expansion) and a small temperature dependence. Figure 3-3-2 shows the temperature dependence of the CLTE. The CLTE of crystalline PPS-GF40% increases as the temperature rises, but amorphous SUMIKAEXCEL PES shows a constant value up to 200°C regardless of the temperature. Glass fiber reinforced 4101GL30 has a low CLTE of 2.0 \times 10⁻⁵ (/°C) similar to that of aluminum, making it an ideal material for precision molding.

Figure 3-3-2 Comparison of the CLTE of SUMIKAEXCEL PES with That of Other Resins

PVT characteristics

The specific volume of thermoplastic resin, including SUMIKAEXCEL PES, changes according to the pressure regardless of whether it is in a solid or melted state. The compressibility of this resin is expressed as the relationship (PVT characteristics) between Pressure, Specific Volume and Temperature. PPS is a crystalline resin, so there is large amount of shrinkage due to crystallization. However, PES is an amorphous resin, so the amount of shrinkage is small, and it is excellent for dimensional accuracy and warpage.

Dimensional Change due to Water Absorption

Although SUMIKAEXCEL PES has a small moisture absorption property, the dimensional change due to moisture absorption of parts immediately after molding is small, at 0.15% at saturation (1.1%).

Figure 3-3-6 Moisture Absorption Curve of SUMIKAEXCEL PES

3-4 Flame Retardancy

Limiting Oxygen Index and Smoke Emission

Figure 3-4-1 shows the Limiting Oxygen Index for comparing flame retardancy with other resins. SUMIKAEXCEL PES is known to have low smoke emission and is even used for parts inside aircrafts. Figure 3-4-2 shows the smoke emission test results by The National Institute of Standards and Technology (NIST) compared with other resins.

Figure 3-4-1 Limiting Oxygen Index (ASTM D2863)

Figure 3-4-2 Amount of Smoke Emission

Outgas

SUMIKAEXCEL PES generates very little corrosive gas during the molding process, and also causes very little outgassing from the moldings.

Figure 3-4-3 Molding Temperature and Outgas from Moldings

(Dumbbell test pieces molded at each temperature were heated at 120°C for 20 hours, and the outgas was analyzed using head space gas chromatograph.)

UL Standard

The UL 94 flammability standard, established by Underwriters Laboratories Inc. is a system for classifying plastic materials based on their flammability resistance. The UL file number for SUMIKAEXCEL PES is registered as E249884.

Color : Color (ALL : All colors, NC : Natural color, BK : Black color, RD : Red color, WT : White color)

Flame Class : Flammability Class

Relative Thermal Index (RTI) : Temperature index

Hot Wire Ignition (HWI) : Hot wire ignition resistance

High Ampere Arc Resistance (HAI) : High current arc ignition resistance

High Voltage Arc Tracking Rate (HVTR) : High voltage arc tracking rate

D495 : Arc resistance test

Comparative Tracking Index (CTI) : comparative tracking index

PLC : HWI, HAI, HVTR, D495, CTI are indicated by the grade of Performance Level Categories (PLC).

Table 3-4-1 UL Registration Status of SUMIKAEXCEL PES and SUMIPLOY

Grade	Color	Thickness	Flame	нули	НАІ	СТІ	HVTR D495	D/05	195 RTI		
Giade	00101	(mm)	Class	11001				D435	Elec	Imp	Str
	NC	0.41	V-0	4	1	4	2	7	-	-	-
	BK	0.75	V-0	3	1	-	-	-	180	170	180
3600G	WT	1.6	V-0	3	1	-	-	-	180	170	180
	NC	3.0	V-0	2	0	-	-	-	180	170	180
		0.41	V-0	3	4	3	1	6	180	170	180
41000		0.75	V-0	3	4	-	-	-	180	170	180
4100G	ALL	1.5	V-0	2	2	-	-	-	180	170	180
		3.0	V-0	1	2	-	-	-	180	170	180
		0.30	V-1	-	-	3	1	6	180	170	180
		0.46	V-0	3	4	-	-	-	180	170	180
4800G	ALL	1.5	V-0	2	2	-	-	-	180	170	180
		3.0	V-0,5VA	1	2	-	-	-	180	170	180
0004.01.00		0.43	V-0	-	-	4	3	5	180	180	180
360 IGL20	NC,BK	3.0	V-0	0	4	-	-	-	180	180	180
2601GL 20		0.43	V-0	-	-	4	2	5	190	190	190
30010130	NC,DK	3.0	V-0	1	4	-	-	-	190	190	190
		0.43	V-0	-	-	4	3	5	180	180	180
4101GL20	NC,BK	1.5	V-0	1	4	-	-	-	180	180	180
		3.0	V-0	0	4	-	-	-	180	180	180
		0.43	V-0	-	-	4	3	5	190	190	190
4101GL30	NC,BK	1.5	V-0	1	4	-	-	-	190	190	190
		3.0	V-0	0	4	-	-	-	190	190	190
	BK	0.52	V-0	-	-	-	-	-	50	50	50
ES5340	NC	0.81	V-0	-	-	-	-	-	50	50	50
	NC,BK	3.0	V-0	-	-	-	-	-	50	50	50
E3010	NC	0.53	V-0	-	-	-	-	-	130	130	130
FS2200	NC,BK	0.43	V-0	-	-	-	-	-	50	50	50
005520	NC	1.5	V-0	-	-	-	-	-	50	50	50
085530	NC	3.0	V-0	-	-	-	-	-	50	50	50
CS5600	NC,BK	0.53	V-0	-	-	-	-	-	50	50	50
GS5620	ALL	0.75	V-0	-	-	-	-	-	50	50	50

3-5 Chemical Stabilities

- PES is not susceptible to hydrolysis.
- Please note that PES may be affected by strong acids.
- SUMIKAEXCEL PES has outstanding chemical resistance among most amorphous polymers. However, precautions must be taken
 according to the actual usage conditions. Some organic chemicals such as ketones and esters may cause stress cracking. In addition,
 please note that PES does dissolve in highly polar solvents such as dimethylsulfoxide (DMSO), aromatic amines, nitrobenzene, and some
 chlorinated hydrocarbons (e.g., dichloromethane, chloroform).
- PES possesses excellent resistance to aliphatic hydrocarbons, alcohols, some types of chlorinated hydrocarbons, certain aromatic chemical agents, oil and grease. Furthermore, depending upon conditions of actual usage, PES is not usually affected by most bleaches and disinfectants.
- However, chemical effects should be evaluated based on actual conditions prior to usage.

Annealing

Residual stress can be relieved in moldings through annealing, which is good for improving chemical resistance. This is easy to confirm by immersing it in toluene or methyl ethyl ketone (MEK).

Hot Water Resistance

SUMIKAEXCEL PES is not susceptible to hydrolysis, thus enabling its usage in hot water and steam having a high temperature of 160°C. However, attentions must be given to potential changes in its properties that may occur due to the absorption of water.

Table 3-5-1 Resistance in Hot Water and under Load (Hot Water 90°C)

		Stress (MPa)						
	13	20	26	33	40			
	4100G	R56.5	R20.2	R15.3	R12.5	-		
SUMIKAEXCEL PES	4800G	989.6	R65.5	R18.7	-	-		
	4101GL30(GF30%)	-	-	987.3	732.5	R25.5		
PPS(GF40%)		-	-	R130	R87	-		

R56.5: Ruptured after 56.5 hours [R = ruptured].

In 4100G, cracking occurred in 56.5 hours under 13MPa load. In 4101GL30, no problem up to 987.3 hours under 26MPa load.

(Does not mean that cracking occurs after 987.3 hours)

Table 3-5-2 Hot Water Resistance at 140°C (4100G)

Period (weeks)	Tensile strength (MPa)	Rate of change (%)	Charpy impact strength (kJ/m²)	Rate of change (%)
Control	81	100	39	100
2	88	108	18	46
7	93	114	14	35
14	92	113	14	34
29	81	100	14	37
42	84	104	15	39

Steam Sterilization at 140°C

The tensile strength of PES does not change at all, even after steam sterilization has been performed at 140°C for 24 hours. A 1% increase in weight occurred during this time.

* 4800G, with high molecular weight, possesses greater resistance to severe hot water conditions than 4100G.

Chemical Resistance

PES is resistant to oils such as gasoline and engine oil, grease, and cleaning solvents such as chlorothene and fluorocarbon. However, it is affected by polar solvents such as acetone and chloroform, so care should be taken when using them. On the other hand, it has the best stress cracking resistance of all amorphous polymers. It is also resistant to alkalis and acids even under high temperatures.

Table 3-5-3 Chemical Resistance and Stress Cracking Resistance

	Immersion test	Stress cracking resistance test			
	4800G	4800G	Polysulfone		
Ammonia	А	-	-		
50% Caustic soda	А	-	-		
Concentrated hydrochloric acid	А	-	-		
10% Nitric acid	А	-	-		
Concentrated nitric acid	С	-	-		
Hydrogen peroxide solution	А	-	-		
Benzene	А	а	с		
Xylene	В	а	с		
Acetone	С	С	с		
Methyl ethyl ketone	С	С	с		
Heptane	А	а	а		
Cyclohexane	А	а	а		
Glycerin	А	а	а		
Ethylene glycol	А	а	а		
Carbon tetrachloride (CCl4)	А	а	а		
Gasoline	А	а	b		
Ethyl acetate	С	b	с		

A : No effect B : Some effect

C : Unfit for use

a : Can be used, except under large loads

b : Can only be used when the load is small

Can only be used when the load is

c : Unfit for use

Table 3-5-4 Change in Weight and Tensile Strength When Immersed in Inorganic Chemicals

			Weight	Tensile strength change (%)						
Chemical name	Grade	Temperature (°C)	Immersion time	Weight change		Immers	sion time	(days)		Remarks
		. ,	(days)	(%)	14	30	90	180	360	
Water	4100G	Room temperature	1	0.43	-	-17.7	-16.6	-21.1	-	-
Water	4100G	50	-	-	-	-13.5	-13.1	-17.7	-	-
Water	4100G	100	-	-	7.0	7.4	9.8	9.2	9.5	-
10% Hydrochloric acid	4100G	Room temperature	180	1.95	-15.6	-14.9	-17.8	-21.1	-	-
Concentrated hydrochloric acid	4100G	Room temperature	180	2.19	-	-6.3	-12.2	-21.1	-	-
15% Hydrochloric acid	4100G	90	-	-	-	-	-40.0	-49.0	-53.0	Significant crazing occurs
10% Sulfuric acid	4100G	Room temperature	180	1.82	-	-13.2	-17.7	-23.4	-	-
50% Sulfuric acid	4100G	60	14	-0.39	6.3	-	-	-	-	-
50% Sulfuric acid	4101GL30	60	14	-0.20	-	-	-	-	-	-
Concentrated sulfuric acid	4100G	Room temperature	-	-	-	-	-	-	-	Dissolves
25% Sulfuric acid	4100G	90	-	-	-	-	2.0	3.0	7.0	-
40% Sulfuric acid	41000	60	14	0.55						
40% Phosphoric acid	4100G	60	14	-0.55	-	-	-	-	-	-
40% Sulfuric acid	41010100	60	14	0.27					_	_
40% Phosphoric acid	41010230	60	14	-0.37	-	-	-	-	-	-
10% Sulfuric acid	4100G	Room temperature	180	2.27	-	-	-	-	-	-
Concentrated nitric acid	4100G	Room temperature	-	-	-	-	-	-	-	Dissolves
5% Nitric acid	4100G	90	-	-	-	-	0.0	-29.0	-24.0	Slight crazing occurs
10% Caustic soda	4100G	Room temperature	180	1.79	-	-13.9	-18.2	-22.3	-	-
Sodium saturated causticum	4100G	Room temperature	180	0.82	-	-4.8	-11.0	-14.2	-	-
5% Caustic soda	4100G	90	-	-	-	-	3.0	2.0	6.1	-
Saturated potassium chloride	4100G	Room temperature	120	1.46	-	-	-	-	-	-
Saturated sodium hypochlorite	4100G	Room temperature	180	1.42	-	-9.8	-15.8	-19.6	-	-
25% Saturated sodium hypochlorite	4100G	90	-	-	-	-10.0	-9.0	-6.0	-	-
10% Ammonium hydroxide	4100G	Room temperature	120	1.63	-	-	-	-	-	-
Hydrogen peroxide solution	4100G	Room temperature	120	2.52	-	-9.8	-	-	-	-
Chlorinated bromine water (PH4)	4100G	90	30	0.33	-	-1.0	-	-	-	-
5% Alum	4100G	90	-	-	-	-	-8.0	-11.0	-12.0	Slight crazing occurs
Sulfurous acid gas	4100G	Room temperature	180	8.49	-	-15.0	-	-34.0	-	-
Nitrogen dioxide	4100G	Room temperature	180	1.19	-	-4.5	-	-4.5	-	-
Sulfur hexafluoride	4100G	Room temperature	30	-0.11	-	2.4	-	-	-	-
Chlorine (Cl)	4100G	Room temperature	28	0.47	-	-62.8	-	-	-	Cracking occurs

Organic Chemical Resistance

Stress Cracking Resistance

The condition of a tensile impact test piece (1.6mm thick) after immersion in each chemical for up to 20 minutes under a constant load is shown using the legend.

Table 3-5-5 Stress Cracking Resistance 1

			S	tress 10MPa		
	P	olyethersulfo	ne	Polysulfone	Polycarbonate	Modified PPO
	4100G	4800G	4101GL30	Unreinforced	Unreinforced	Unreinforced
Acetone	R1S	R4S	20	R2S	R1S	20
Methyl ethyl ketone	R1S	R2S	20	R1S	20	R18
Cyclohexanone	R1S	R19S	20	20	20	D
Benzene	C20	20	20	R1S	R4	D
Toluene	20	20	20	R1S	R11	D
Xylene	20	20	20	R4S	R15	D
Trichloroethylene	C20	C20	20	D	20	D
1.1.1 - Trichloroethane (Chlorothene)	20	20	20	R8S	R3	D
Carbon tetrachloride (CCl4)	20	20	20	SLC20	R6S	D
1.2 - Dichloroethane	R1S	R1S	20	D	D	D
Perchloroethylene	20	20	20	C20	R1S	D
Chloroform	R1S	R1S	20	D	D	D
Trichlorotrifluoroethane	20	20	20	20	20	D
Methanol	20	20	20	20	20	20
Ethanol	20	20	20	20	20	20
N-butanol	20	20	20	20	20	20
Ethylene glycol	20	20	20	20	20	20
2-ethoxyethanol	C20	SLC20	20	C20	R17	20
Propane - 1.2 - diol	20	20	20	20	20	20
Heptane	20	20	20	20	20	20
Ethyl acetate	R315	C20	20	R3S	20	20
Diethyl ether	C20	SLC20	20	C20	R1	20
Carbon dioxide	20	20	20	R8S	R1S	D
Gasoline	20	20	20	20	C20	20
Light oil	20	20	20	20	20	20

(Legend) 20After 20 minutes of immersion, no changes at all were observed in the test piece.

C20After 20 minutes of immersion, crazing occurred on the test piece. SLC20After 20 minutes of immersion, slight crazing occurred on the test piece. R8After 8 minutes of immersion, the test piece ruptured.

R2SAfter 2 seconds of immersion, the test piece ruptured. DThe test piece dissolved.

Table 3-5-5 Stress Cracking Resistance 2

		Stress 19MPa						
	Po	olyethersulfo	ne	Polysulfone	Polycarbonate	Modified PPO		
	4100G	4800G	4101GL30	Unreinforced	Unreinforced	Unreinforced		
Acetone	R1S	R3S	20	R2S	R1S	20		
Methyl ethyl ketone	R1S	R1S	20	R1S	R5	R20S		
Cyclohexanone	R1S	R5S	20	D	D	D		
Benzene	R2	C20	20	R1S	R3	D		
Toluene	R6	C20	20	R1S	R3	D		
Xylene	20	20	20	R2S	R11	D		
Trichloroethylene	R6	R11	20	D	R17	D		
1.1.1 - Trichloroethane (Chlorothene)	20	20	20	R3S	R1	D		
Carbon tetrachloride (CCl ₄)	20	20	20	R3	R3S	D		
1.2 - Dichloroethane	R1S	R1S	20	D	D	D		
Perchloroethylene	20	20	20	R8	R1S	D		
Chloroform	R1S	R1S	20	D	D	D		
Trichlorotrifluoroethane	20	20	20	20	20	D		
Methanol	20	20	20	20	20	20		
Ethanol	20	20	20	20	20	20		
N-butanol	20	20	20	C20	C20	20		
Ethylene glycol	20	20	20	20	20	20		
2-ethoxyethanol	C20	C20	20	C20	R10	20		
Propane - 1.2 - diol	20	20	20	20	20	20		
Heptane	20	20	20	20	SLC20	R19		
Ethyl acetate	R17S	R7	20	R1S	R4	20		
Diethyl ether	C20	C20	20	R7	R1	R15		
Carbon dioxide	20	20	20	R5S	R1S	D		
Gasoline	20	20	20	C20	R3	R1		
Light oil	20	20	20	20	20	20		

(Legend) 20After 20 minutes of immersion, no changes at all were observed in the test piece.

C20After 20 minutes of immersion, crazing occurred on the test piece.

SLC20After 20 minutes of immersion, slight crazing occurred on the test piece.

R8After 8 minutes of immersion, the test piece ruptured.

R2SAfter 2 seconds of immersion, the test piece ruptured.

DThe test piece dissolved.

Solubility

PES is a polar polymer that dissolves in polar solvents. PES solubility is important for paint and coating applications and for adhesion of solvents. Solvents for PES are as follows: dimethylsulfoxide, N,N-dimethylformamide, N-methylpyrrolidone, and dimethylacetamide.

Changes in Weight and Tensile Strength

Table 3-5-6 indicates the weight changes that occur when PES is immersed in various organic chemicals. Although the weight of PES will change over a range of -0.5% to 2% when immersed in non-solvent chemicals, depending on the temperature and time of immersion, the dimensions themselves remain unchanged. When immersed in weak solvents, PES generally softens and swells, with its weight changing significantly.

Table 3-5-6 Changes in	Weight and	Tensile Strength When	Immersed in Organic Chemicals ((4100G)
				/

		Tomporatura	Weight change		Change in tensile strength					
Chemical name	Grade	(°C)	Immersion time	Weight change		Immers	sion time	(days)		Remarks
		(3)	(days)	(%)	7	30	90	180	360	
25% Acetic acid		90	-	-	-	-	-3.00	-27.00	-42.00	Crazing occurs after 360 days
Glacial acetic acid		Room temperature	30	0.31	-	-	-	-	-	-
5% Phenol		Room temperature	90	6.66	-29.70	-35.70	-45.80	-	-	-
Hydrazine anhydride		Room temperature	14	3.50	-	-	-	-	-	Softens
Benzene		Room temperature	180	1.48	-3.20	-3.10	-8.60	-13.50	-	-
Xylene		Room temperature	7	0.49	-	-	-	-	-	-
Heptane		Room temperature	180	0.21	-0.80	-1.00	-5.80	-10.00	-	-
Cyclohexane		Room temperature	120	0.12	-	-	-	-	-	-
Methanol		Room temperature	14	2.09	-	-	-	-	-	-
Ethanol		Room temperature	180	1,46	-2.20	-5.00	-13.60	-18.70	-	-
Ethylene glycol		Room temperature	120	0.53	-	-	-	-	-	-
Propylene glycol	4100G	100	14	-0.36	-	-	-	-	-	-
Glycerin		150	14	0.06	-	-	-	-	-	-
White spirit		130	7	-0.51	+21.90	-	-	-	-	Slight cracking
Ethyl acetate		Room temperature	60	10.70	-	-	-	-	-	Softens
Amyl acetate		Room temperature	120	-0.08	-	-	-	-	-	-
Diethyl ether		Room temperature	120	2.91	-	-	-	-	-	-
Carbon tetrachloride (CCl4)		Room temperature	180	0.44	-0.40	-0.30	-6.40	-11.30	-	-
1.1.1-Trichloroethane (Chlorothene)		Room temperature	120	1.01	-10.20	-19.20	-32.80	-51.60	-	-
Genklene		Room temperature	120	1.13	-	-	-	-	-	-
Perchloroethylene		Room temperature	120	0.78	-	-	-	-	-	-
North Sea Gas		Room temperature	180	0.01	-	-0.34	-	0.20	-	-
Ethylene oxide		Room temperature	190	7.59	-	-14.00	-	-39.10	-	Cracking occurs at a stress of 140kg/cm ²
Propylene gas		Room temperature	180	0.21	-	-	-	-0.11	-	-

Cleaning solvents

When coating or bonding with PES, it is often necessary to remove grease, oils, and parting agents from the surface of moldings. For this purpose, the usage of certain cleaning solvents, such as acetone and methyl ethyl ketone, should be avoided. Table 3-5-7 indicates the effects of cleaning solvents on 4100G.

Cleaning solvent (under reflux)	Time (minutes)	Hardness (initial value=98)	Weight increase (%)
Arklone P	2	98	0
	10	98	0
	30	98	0
Arklone L	2	98	0
	10	98	0
	30	98	0
Genklene	2	98	0
	10	98	0
	30	98	0
Trinklone A	2	98	0
	10	98	1
	30	98	1
Trinklone N	2	98	1
	10	Surface cracking occurs	1
	30	Surface cracking occurs	2
Perchloroethylene	2	98	0
	10	98	0
	30	98	0
Methylene chloride	2 10 30	98 Dissolves Dissolves	3

Oil, Gasoline, and Transmission Fluid Resistance

Table 3-5-8 Weight Changes in Oils or Gasoline (4100G)

Environment	Immersion time (days)	Temperature (°C)	Weight change (%)
Linseed oil	180	Room temperature	0.63
Deep Frying Oil	2	180	-0.10
Silicone oil (ICI 190)	180	Room temperature	0.37
Veedol ATF 3433 (Transmission oil)	365	130	0.38
Castrol ATF	90	160	-0.55
Shell Diala trans oil	180	Room temperature	0.30
Castrol ATF Solvent flushing Oil	90	Room temperature	0.50
Duckhamz 20/50 oil	90	160	2.84
Gunk	90	Room temperature	0.55
98-octane gasoline	180	Room temperature	0.60
3 Star petrol	90	Room temperature	0.20
ASTMII Oil	7	Room temperature	0

Figure 3-5-1 Change in Mechanical Properties in Transmission Oil (4100G)

Table 3-5-9 Stress Cracking Resistance in Gasoline (Room Temperature)

Grada	Environment		Stress	(MPa)	
Grade	Environment	9	19	28	37
4100G	Diesel gasoline	20	20	20	20
4100G	97-octane gasoline	20	20	SLC20	C20
4100G	100-octane gasoline	20	R270h	C20	R19
4100G	Paraffin	2110h	2110h	2110h	2110h
4101GL30	97-octane gasoline	20	20	20	20
4101GL30	100-octane gasoline	360h	360h	20	20

R : Crack C : Crazing SLC : Slight crazing h : Hour, minutes if there is no particular unit (Legend) 20 : No problem for 20 minutes R270h : Cracks occurred at 270 hours

2110h : No problem until 2,110 hours

Table 3-5-9 Stress Cracking Resistance in Oil (Vactralite Oil) (100°C)

Grade	Notch radius	Stress (MPa)					
Glade	(mm)	5	10	20	25	30	40
4100G	0.01	2000h	R150h	-	-	-	-
4100G	0.25	2300h	R110h	-	-	-	-
4100G	0.50	-	1450h	R330h	-	-	-
4100G	1.00	-	2000h	2000h	-	3000h	R790h
4100G	2.50*	-	-	2300h	-	2000h	R700h
4101GL20	0.50	-	-	-	1632h	R460h	R160h

Table 3-5-11 Stress Cracking Resistance in Turbine Oil (160°C)

Crada	Oil	Notch radius			Stress (MPa)			
Grade	O	(mm)	10	20	30	40		
4800G	Aeroshell 555 2.5		3000h	R1h	-	-		
4101GL20	Aeroshell 555	0.5*	250h	R3h	-	-		
4101GL30	Aeroshell 555	2.5	-	3700h	-	-		
4800G	Esso Turbo 2380	2.5	3200h	-	-	-		
4101GL30	Esso Turbo 2380	2.5	-	-	1650h	R2h		
4800G	Esso Turbo 2389	2.5	1400h	R20h	-	-		

*Mold notch

*Mold notch

(Legend) 20

(Items without an asterisk (*) are machine notched.) (Legend) 20 : No problem for 20 minutes R270h : Cracks occurred at 270 hours 2110h : No problem until 2,110 hours

(Items without an asterisk (*) are machine notched.)

20: No problem for 20 minutesR270h: Cracks occurred at 270 hours2110h: No problem until 2,110 hours

Table 3-5-12 Effects of Oil Immersion on Mechanical Properties (4800G)

Oil type		Temperature		Im	mersion t	ime (wee	ks)	
On type		(°C)	2	4	6	16	32	52
Mineral oil		100	+	+	+	+	+	+
		120	+	+	+	+	0	0
		140	+	0	0	0	0	
Synthetic hydrod	carbon oil	100	+	+	+	+	0	0
		120	+	+	+	+	0	0
		140	0	0	0	0	-	
Silicone oil	Dimethyl	120	+	+	+	+	0	0
		160	+	0	0	0	0	0
	Methylphenyl	120	+	+	+	+	+	+
		140	+	+	+	0	0	
		160	+	0	0	0	0	0
		180	+	0	-	-	-	-
	Chlorophenyl	160	0	0	0	0	0	0
		180	-	-	-	-	-	-
		200	-	-	-	-	-	-
Ester oil	Diester	120	+	+	+	+	0	0
	Polyester	120	+	+	0	0	-	-
	-	160	0	0	-	-	-	-
		180	0	-	-	-	-	-
Polyglycol oil		100	+	+	+	+	+	+
		120	+	+	+	0	0	0
		140	0	0	0	0	0	
Fluorinated alkylether oil		180	0	0	0	-	-	-
		200	-	-	-	-	-	-
Water-soluble oil emulsion		80	0	0	0	0	-	-
Mineral base oil	+ Thickener							
(a) Calcium s	80	+	+	0	0	0	0	
(b) Lithium so	120	+	0	0	-	-	-	
(c) Lithium lea	120	0	0	0	0	-	-	
(d) Calcium complex soap		120	+	+	+	+	+	-
(e) Sodium synthetic soap		120	0	0	0	-	-	-
(f) Polyurea		120	0	0	0	0	-	-
Diester + Lithium soap		120	+	+	+	+	0	0
Silicone base oil								
Dimethyl+Der	natured amide	120	+	0	0	0	0	0
Methylphenyl	+ Lithium soap	120	+	+	+	+	0	0
		140	+	+	+	+		
		160	+	+	0	0		

(Legend)		
+ Resistance	Excellent Retention	75% or greater
0	Good	50% or greater
-	Fail	Less than 50%

Table 3-5-13 Stress Cracking Resistance under Constant Strain in Turbine Oils (4800G)

		Tempera	ature		
Oil	Room temperature	150°C	16	0°C	
		Deforma	ation		
	3%	2%	1%	0%	
Aeroshell 500	0.05	R5	0.15	15	
Aeroshell 555	5	R5	15*	15	
Aeroshell 750	5	R5	15	-	
Castrol 580	5	R5	15	-	00 · No problem for 00 minutes
Esso Turbo 25	5	R5	25	-	(Legend)
Esso Turbo 274	5	R5	R25**	15	* Surface cracking occurred parallel to the resi
Esso Turbo 2380	5	R5	R25**	15	tiow direction. ** Cracking did not occur during a 25-minute
Esso Turbo 2389	5	R5	-	-	exposure.

Bleach and Liquid Disinfectant Resistance

PES is not affected by most bleaches and liquid disinfectants, unless they are in highly concentrated form. After being immersed in liquid disinfectant, molded PES products must be rinsed water. If further sterilization is required, steam or dry heat can be applied.

	Table 3-5-14 E	ffects of Bleaches	and Liquid	Disinfectants	(4100G)
--	----------------	--------------------	------------	----------------------	---------

Solution	Weight change (%)	Tensile strength change (%)
10% Lissapol N	1.46	-11.6
2% lvisol	1.35	-14.6
0.5% Gevisol	1.40	-14.8
2% Instrusan	1.42	-15.6
1% Bentenol	1.30	-13.6
1% Soilay 901-SD	1.36	-14.7
Household bleach	1.27	-

Conditions : Immersed for a period of 1 month at room temperature

3-6 Electrical Properties

PES is a heat resistant material that possesses electrical insulating properties. It maintains an outstanding Relative permittivity and dielectric dissipation factor, as well as superb electrical resistance, up until temperatures exceeding 200°C.

Relative permittivity

The dielectric constant of SUMIKAEXCEL PES is constant from 60Hz to 1GHz, and is only slightly higher when molded products absorb water.

Dielectric dissipation factor

The dielectric dissipation factor of SUMIKAEXCEL PES is stable at a low value of about 0.001 at the 20 to 150°C temperature range. The frequency dependence of the dielectric dissipation factor is about 0.003 even at 10GHz.

Figure 3-6-3 Temperature Dependence of Dielectric Dissipation

Figure 3-6-4 Frequency Dependence of Dielectric Dissipation Factor

Volume Resistivity

PES possesses a high volume resistivity of $10^{11} \Omega$ -m, even at 200°C.

Figure 3-6-5 Temperature Dependence of Volume Resistivity (Polarization Time : 1000 sec.)

Insulation Properties

SUMIKAEXCEL PES has good insulation properties, and insulation remains almost the same even when the temperature increases.

Figure 3-6-6 Temperature Dependence of Dielectric Strength of SUMIKAEXCEL PES

Test conditions Test method : IEC 60243-1 reference Test piece thickness : 1.6mm

3-7 Sliding Properties Test Method

There are various evaluation test methods for sliding characteristics. The appropriate method depends on the application and situation. Devices for evaluating the basic sliding characteristics of resin include a Suzuki wear tester, Pin-on-Disk wear tester, and thrust wear tester (Amsler, etc.).

Limiting PV Value

The limiting PV value (Load pressure x Velocity) represents the limit at which the sliding surface of the material becomes deformed or melts due to frictional heat generation. Therefore, when conditions exceed the limiting PV value, both friction and wear will increase significantly, making it unusable. The limiting PV value increases as the resin heat resistance increases. It is necessary to use it at about 50 to 60% or lower than the limiting PV value.

Frictional Properties

Frictional properties are indicated by the static friction coefficient (μ_{s}) and dynamic friction coefficient (μ_{o}). Fluororesin-based sliding materials are said to have the smallest friction coefficient.

The frictional resistance at startup is represented by μ_s . It is important that the μ_s be small and stable for applications where it repeatedly changes from static to movement. The μ_s immediately after molding and μ_s after initial wear are different.

Sliding Characteristics of Non-Reinforced Sliding Grades

Non-reinforced sliding grades that do not contain reinforcing fibers include SUMIPLOY E3010 and SUMIPLOY FS2200. These have a feature making it extremely difficult to damage the mating material in a dry state even when the mating material is a soft metal such as SUS or aluminum.

Limiting PV value

Figure 3-7-1 shows the velocity dependence of the limit PV values for E3010 and FS2200 compared with other engineering plastic sliding grades. This indicates that it has a limit PV value that is considerably higher than the compared sliding materials.

Figure 3-7-1 Velocity Dependence of Limiting PV Values for Non-Reinforced Sliding Grades

Frictional Properties

E3010 shows the smallest static friction coefficient in the dry state among sliding materials for injection molding. E3010 maintains its initial static friction coefficient even after wear and is stable over a long period of time.

Wear Properties

Table 3-7-1 shows the friction and wear properties of SUMIPLOY sliding grades in comparison with the sliding grades of other general-purpose engineering plastics. It shows stable wear resistance for low to high PV values. Figure 3-7-2 shows the relationship between the amount of wear and time for E3010 when P = 0.6MPa and V = 40m/min. The initial wear is smaller than that of fluororesins containing filler. It is also equivalent to fluororesins containing polyimide.

	Table 3-7-1 F	riction and Wear P	roperties of Non	-Reinforced Sliding	Grades	(Thrust Type	Testing Machine
--	---------------	--------------------	------------------	---------------------	--------	--------------	-----------------

N	leasuring cond	ditions						
Pressure P (MPa)	Speed V (m/min)	Mating material	Sample	Coefficient µD	Cumulative friction amount ∆W(µ)	Wear coefficient K(mm/km-MPa)	Wear of mating material (mg)	
			E3010	0.16	3.5	1.2×10 ⁻⁶	Transfer	
1	10	SU 19304	FS2200	0.12-0.30	11	3.8×10 ⁻⁶	0.27	
1	10	000004	PTFE-filled PC	0.12-0.31	95	33.3×10 ⁻⁶	0.13	
			PTFE-filled POM	0.13	8.7	3.0×10 ⁻⁶	0.10	
			E3010	0.18	11	1.6×10 ⁻⁶	0.01	
			FS2200	0.14-0.21	133	19.2×10 ⁻⁶	0.16	
0.6	40	SUS304	CF/PTFE filled PPS	0.40	132	19.2×10 ⁻⁶	13.6	
			PTFE-filled PC	Above the limiting DV value (melting within a few minutes)				
			PTFE-filled POM	Above the lim	iting FV value (meitin	g within a lew minute	5)	
			E3010	0.24	5.7	2.0×10 ⁻⁶	0.16	
0.1	100	SKH-2	FS2200	0.29	85	29.5×10 ⁻⁶	0.14	
		CF/PTFE filled PPS	0.81	90	31.3×10 ⁻⁶	10.5		
	100	01/11.0	E3010	0.22	5.4	0.9×10 ⁻⁶	0.24	
0.2	100	SKH-2	CF/PTFE filled PPS	0.53	168	29.2×10 ⁻⁶	4.30	

Figure 3-7-2 Friction and Wear Properties of Non-Reinforced Sliding Grades

P = 0.6MPa V = 40m/min Mating material: SUS304

Sliding Characteristics of Fiber-Reinforced Sliding Grades

SUMIPLOY CS5220, CS5530, and CK3420 are reinforced grades with carbon fiber, inorganic filler, etc. These have excellent dimensional stability, mechanical strength and rigidity, a small coefficient of thermal expansion, and can even be used under harsh conditions with a high PV value. Although the friction coefficient is relatively large and has slight fluctuation, it can be used for various applications by using a mating metal material with high hardness, by applying a hardening treatment to the surface of the material, or by using it together with lubricating oil. However, keep in mind that these may damage soft metals such as SUS and aluminum.

Limit PV Values for SUMIPLOY Fiber-Reinforced Grades

Table 3-7-2 shows the limiting PV values for SUMIPLOY CK3420, a fiber-reinforced grade.

Table 3-7-2 Limiting PV Values of Fiber-Reinforced Sliding Grades

	Unit : MPa-m/m
	CK3420
V = 40m/min	160
V = 100m/min	100

Mating material : SKH-2, room temperature-DRY

Table 3-7-3 Friction and Wear Properties of

Friction and Wear Properties of SUMIPLOY fiber-Reinforced Grades

The following shows the PV value dependence of the dynamic friction coefficient μ_{D} when the velocity is V = 40 m/min, 100 m/min. Each grade shows a small value of 0.1 to 0.2 when the PV value is high (high load), but the friction coefficient is large when the PV value is low (low load). Therefore, it is a good sliding material for high loads and high speeds.

The wear resistance of these fiber reinforced grades is not good compared to non-reinforced sliding grades. Table 3-7-3 shows examples of friction and wear properties.

Fiber-Reinforced Sliding Grades						
Sliding conditions	Item	CK3420				
P = 0.6MPa V = 40m/min	Friction coefficient Wear coefficient (mm/km/MPa)	0.81 45×10 ⁻⁶				
Room temperature-DRY	Change in mating material weight (mg)*	+1.9				
P = 0.2MPa	Friction coefficient	1.00				
V = 100m/min	Wear coefficient (mm/km/MPa)	36×10 ⁻⁶				
Room temperature-DRY	Change in mating material weight (mg)*	+0.2				

Mating material : SKH-2, sliding time : 48hr

': + denotes transfer.

Figure 3-7-3 Relationship between Dynamic Friction Coefficient and PV

3-8 Other Properties

Light transmittance

SUMIKAEXCEL PES is a transparent resin with a slight yellow color that has a low haze value and an excellent light transmission rate among heat-resistant engineering plastics.

Refractive index

This shows the refractive index for SUMIKAEXCEL PES. Since PES has a high refractive index, it is excellent for applications such as lenses.

Table 3-8-1	Refractive	Indices of	SUMIKAEXCEL	PES
-------------	------------	------------	-------------	-----

Wavelength (nm)	Refractive index
544 (Green)	1.6677
589 (Orange)	1.6525
633 (Red)	1.6428
670 (Red)	1.6366

Grade : SUMIKAEXCEL 4100G Measurement temperature : 23°C

Weather Resistance

As with other sulfone resins, SUMIKAEXCEL PES does not have good weather resistance. Ultraviolet rays cause the surface of the polymer to deteriorate. It may be possible to use outdoors in black to reduce loss of strength.

Figure 3-8-2 Weather Resistance of SUMIKAEXCEL PES

CAE Analysis

CAE (Computer-Aided Engineering) analysis can be used to evaluate (simulate) product design issues using a computer. The table below shows some of the technical data required for CAE. The following data was measured for flow analysis. Please contact us to obtain the detailed technical data required for CAE analysis.

Table 3-8-2 Characteristics of SUMIKAEXCEL PES

			Unreinforced	Glass fiber reinforced		
	Test method	Unit	3600G 4100G 4800G	3601GL20 4101GL20	3601GL30 4101GL30	
Specific heat	ASTM E1269	J/(kg⋅K)	963	847	788	
Thermal conductivity	ISO 22007-2	W/(m⋅K)	0.16	0.28	0.24	
Young's modulus (MD)	ASTM D638	MPa	2,650	6,600	8,900	
Young's modulus (TD)	ASTM D638	MPa	2,650	4,300	5,000	
Poisson's ratio (MD)	ASTM D638	-	0.40	0.40	0.41	
Poisson's ratio (TD)	ASTM D638	-	0.40	0.47	0.49	
Linear expansion coefficient (MD)	ISO 11359-2	10 ⁻⁵ /K	4.9	2.4	2.1	
Linear expansion coefficient (TD)	ISO 11359-2	10 ⁻⁵ /K	4.9	4.7	4.5	

4. Injection Molding

4-1 Injection Molding Conditions

Molding Conditions

The standard molding conditions for SUMIKAEXCEL PES and SUMIPLOY are shown below.

Table 4-1-1 Standard Molding Conditions for SUMIKAEXCEL PES

Grade		3600G 4100G		4800G		3601GL20 / 3601GL30 4101GL20 / 4101GL30 ES5340		
		Recommended	Range	Recommended	Range	Recommended	Range	
Drying temperature (°C)		160	-180	160-180		160	160-180	
Drying time (hr)	Drying time (hr) 5-24 5-24		-24	5	-24			
	Rear	320	300-340	320	320-340	320	300-340	
Cylinder temperature	Center	340	320-370	340	330-370	340	320-370	
(°C)	Front	350	330-380	360	340-390	350	330-380	
	Nozzle	350	330-380	360	340-390	350	330-380	
Suitable resin temperature (°C)		350	350-360	360	350-370	350	350-360	
Tool (Mold) temperatur	Tool (Mold) temperature (°C)		120-180	140-180	120-180	140-180	120-180	
Injection pressure (MPa)		100-200	100-200	100-200	100-200	100-200	100-200	
Injection speed		Low speed	Low to medium speeds	Low speed	Low to medium speeds	Low speed	Low to medium speeds	
Screw rotation (rpm)		50-100	50-100	50-100	50-100	50-100	50-100	
Back pressure (MPa)		5-10	5-10	5-10	5-20	5-10	5-10	
Holding pressure (MPa)	50-100	50-100	50-100	50-150	50-100	50-100	

Table 4-1-2 Standard Molding Conditions for SUMIPLOY

Grade		GS5620 CS5220 / CS5530 / CS5600		E3010 FS2200		CK3400 / CK3420 CK4600	
		Recommended	Range	Recommended	Range	Recommended	Range
Drying temperature (°C)	160	160-180	160	160-180	160	160-180
Drying time (hr)		8	5-24	8	5-24	5	5-24
	Rear	320	320-340	320	300-340	380	360-400
Cylinder temperature	Center	340	330-370	340	320-370	390	370-410
(°C)	Front	360	340-390	350	330-380	390	380-420
	Nozzle	360	340-390	350	330-380	400	380-420
Suitable resin temperature (°C)		360	340-390	350	350-360	400	380-420
Tool (Mold) temperature	e (°C)	140-180	120-180	140-180	120-180	180	120-180
Injection pressure (MPa	a)	100-200	100-200	100-200	100-200	100-200	100-200
Injection speed		Low speed	Low to medium speeds	Low speed	Low to medium speeds	Low speed	Low to medium speeds
Screw rotation (rpm)		50-100	50-100	50-100	50-100	50-100	50-100
Back pressure (MPa)		5-10	5-10	5-10	5-10	5-10	5-10
Holding pressure (MPa)	100-200	50-200	50-100	50-150	100-200	50-200

Pre-drying

As SUMIKAEXCEL PES is susceptible to water absorption, it must be dried thoroughly prior to usage. PES resin should be dried at temperatures ranging from 160 to 180°C for 5 to 24 hours, using a hot air circulation oven or a dehumidifying dryer. When drying using oven trays, PES resin should be spread on the trays to a thickness of 50mm or less. In particular, for molding large sized moldings, it is recommended that PES resin is dried at a temperature of 180°C.

In addition, the use of a dehumidifying dryer is recommended for non-reinforced grades and for large sized moldings. If a hopper dryer is used, it is important to ensure that it has both adequate resin capacity and large heat capacity. If pre-drying is sufficient, then silver streaking or flashing may appear on the surface of the molding. If this kind of phenomena occurs, then further drying of the resin is necessary.

As SUMIKAEXCEL PES is not susceptible to hydrolysis, it will not deteriorate during the drying process, if dried in accordance with the abovementioned conditions.

Figure 4-1-1 Drying Curve of 4100G

Resin Temperature

A resin temperature of 330 to 380°C is recommended. As SUMIKAEXCEL PES possesses high melt viscosity, the resin temperature tends to increase to a value higher than the cylinder temperature setting due to shear heat generation, and this may result in a temperature difference of more than 40°C. The resin temperature must be carefully monitored while molding operations are performed.

Resin Residence Time

The length of time that it stays in the cylinder has a major impact on injection molding product quality. The residence time should be no longer than 10 minutes. The longer the residence time, the greater the possibility of thermal deterioration resulting in discoloration, black streaks, or black spots on molded parts.

Mold Temperature

The mold temperature should be set in a manner such that the surface temperature will be between 120 to 180°C. Also, ensure that the surface of the mold has a uniform temperature distribution.

If the mold temperature is excessively low, moldings may warp or crack (rupture) due to residual stresses. Residual stresses may also cause glass fibers to be visible on the surface of moldings for glass fiber grades. Moldings having low residual stresses can be obtained by using a high mold temperature. However, if the tool temperature is excessively high, deformation may occur during mold release.

With respect to the methods used for mold heating, both heaters and oil temperature control are recommended. However, for the following molds, oil temperature control should be implemented in order to ensure the most uniform mold temperature distribution: molds that have complex shapes; deep molds; and molds that have slide cores.

In particular, when molding large sized products and when using non-reinforced grades, additional precautions must be taken to ensure that proper mold temperatures are maintained.

Injection Pressure and Holding Pressure

In general, the injection molding of SUMIKAEXCEL PES requires high injection pressure of 100 to 200MPa. Over 150MPa of injection pressure is required for the molding of thin-walled products, for the molding with glass fiber reinforced grades, and for the molding of products with large flow length.

It is recommended that the holding pressure is set to 1/2 to 1/3 of the injection peak pressure, and it should be set as low as possible at the level that does not cause sink marks. The lower the holding pressures, the less residual stress there will be on the molded products. The higher the peak pressure and holding pressure, the more difficult it is to release from the mold. Therefore, adjust the V-P switching position so that the peak pressure does not increase too much.

Injection speed

In general, SUMIKAEXCEL PES should be molded at low to medium injection speeds. However, the optimum injection speed will vary depending on the shape of the products.

As SUMIKAEXCEL PES has high melt viscosity, an excessively high injection speed will result in burning and silver streaking, due to the heat generated by shear and adiabatic air compression. However, high injection speeds are required for the molding of both thin-walled products (1mmt or less) and products with large flow length. In general, lower injection speeds result in products that have less residual stress.

Screw Rotation Speed and Back Pressure

It is recommended that screw rotation speed is between 50 to 100rpm in order to prevent increases in resin temperature due to shear heat generation.

The appropriate back pressure allows for consistent melting of resin. The recommended back pressure is 5 to 10MPa. When molding PES grades that have high molecular weights, ensure that a greater back pressure is applied. However, if back pressure is too high, problems such as resin overheating and overloading may occur.

Temporary Suspension of Molding

Whenever the molding process is suspended for a short period of time, set the cylinder temperature to 250 to 260°C, in order to prevent thermal deterioration of the resin. If the resin temperature decreases to less than 250°C, the screw surfaces and internal walls of the cylinder may be damaged and foreign objects may be caused after the molding process has resumed. When the molding process is to be suspended for a long period of time, reduce the cylinder temperature only after the inside of the cylinder has been purged with purging materials.

Purging Method

Recommended purging materials are as follows : polyethylene that has a high molecular weight of approximately MFR 0.05 ; polycarbonate ; or more preferably, the same materials containing glass fiber.

• As SUMIKAEXCEL PES requires high processing temperatures, smoke, gas emission, and resin blown-off may occur during the purging process.

• Ensure that none of the purging material is left within the cylinder.

Item		Recommended Conditions/Procedures
Sotup	Back pressure	High (Ensure that the screw retracts slowly.)
Screw rotation speed		Set the same rotation speed as for when molding the prior resin.
1. Prior resin discharge		Discharge as much of the prior resin from the hopper and cylinder as possible.
2. Purging material input		Input purging material while maintaining the prior resin molding temperature, and perform sufficient purging. When using a glass fiber reinforced purging material replace it with a non-reinforced purging material before replacing it with PES so that no glass fibers remain.
3. Temperature change 4. Purging material discharge and PES input	Change to the PES molding temperature while continuing to input purging material.	
	4. Purging material discharge and PES input	Discharge the purging material thoroughly after reaching the moldingtemperature of PES, and then input the PES.
	5. Molding	After purging with PES, it is possible to perform molding once the cylinder temperature becomes stable.

Table 4-1-3 Recommended Purging Procedure (When Switching to SUMIKAEXCEL PES)

Checking of Residual Stress

SUMIKAEXCEL PES molded products may suffer from defects such as cracking or breakage during mold release, due to the effects of residual stress.

The following method can be used to check the residual stress of SUMIKAEXCEL PES molded products. This method can also be used for determining optimum molding conditions.

- Test method
- 1. Allow the molded products to cool to room temperature
- 2. Immerse the molded products in xylene for 90 seconds
- 3. Clean it them in cold water
- 4. Check the molded products carefully for cracks.
- 5. If there are no cracks, perform the same test in toluene. Thereafter, perform the test in the same manner, changing the solvent to ethyl acetate, then methyl ethyl ketone, in that order.
- 6. The kind of solvent that caused the cracks can be used to estimate the magnitude of the residual stress in the molded product. (see "Table 4-1-4")

Table 4-1-4 Residual Stress Checking Method for SUMIKAEXCEL PES (4100G)

Solvent	Residual strain	Residual stress
Cracks occurred in xylene	1.3-1.5% or more	30-40MPa or more
Cracks occurred in toluene	1.0% or more	27MPa or more
Cracks occurred in ethyl acetate	0.50% or more	14MPa or more
Cracks occurred in methyl ethyl ketone	0.35% or more	10MPa or more

4-2 Moldability

Flowability

Flowability of SUMIKAEXCEL PES improves greatly as the cylinder temperature, injection pressure, and wall thickness of molded products increase. However, mold temperature does not have a major impact. If mold release failure, glass fiber floating or weld cracking occurs, it is recommended to increase the mold temperature to 160°C or higher.

Apparent Melt Viscosity

The apparent melt viscosity of SUMIKAEXCEL PES is as follows.

Figure 4-2-2 Shear Rate Dependence of Apparent Melt Viscosity

Molding of Relatively Thick-Walled Products

This section focuses on the flow characteristics at a wall thickness of 3mm.

Effect of Cylinder Temperature

When the cylinder temperature increases, the melt viscosity of the resin decreases and the flowability improves. The bar flow length improves by 30 to 60% when it is set 20°C higher.

Effect of Injection Pressure

The bar flow length improves by 10 to 20% when the injection pressure is set 20 MPa higher. High-pressure molding is generally recommended, but carefully check for mold release defects and residual stress due to overpacking. Select appropriate conditions by setting the secondary pressure.

righter + 2 + Dependence of bar flow Eerigin on injection i resource (+1000	Figure 4-	-2-4 Dependenc	of Bar Flow	Length on	Injection	Pressure	(41000
---	-----------	----------------	-------------	-----------	-----------	----------	--------

Effect of Injection Speed

Injection speed does not have a significant effect on the bar flow length.

Molding machine: Neomat N47/28 (Sumitomo Heavy Industries, Ltd.)Mold: 3mm x 8mmwMold temperature:120°C

Effect of Product Wall Thickness

Flow length increases sharply with wall thickness. When the wall thickness is 1.5mm or higher, flowability can be improved 40 to 70% by increasing the wall thickness by 0.5mm.

Molding of Thin-Walled Products

This section describes the flow characteristics at wall thickness of 0.1 to 0.7mm.

Effect of Cylinder Temperature

Flowability improves as the cylinder temperature increases, but this effect decreases when the wall thickness is 0.3mm or less. Considering the effects of thermal degradation, a temperature of up to about 380°C is suitable.

Effect of Product Wall Thickness

The flowability depends on the wall thickness, so please pay attention to this when designing your product.

Figure 4-2-10 Wall Thickness Dependence (4100G)

Figure 4-2-11 Wall Thickness Dependence (3601GL20)

Effect of Injection Pressure

Thin-wall flowability tends to be greatly affected by injection pressure. Injection pressure of at least 100MPa is recommended. However, it is required to determine the proper injection pressure by taking product appearance and residual stress into consideration.

Figure 4-2-12 Injection Pressure Dependence (4100G)

Figure 4-2-13 Injection Pressure Dependence (3601GL20)

Effect of Injection Speed

Thin-wall flowability is not affected by injection speed so much. If the injection speed is too high, it may cause defects such as burns.

Figure 4-2-14 Injection Speed Dependence (4100G)

Figure 4-2-15 Injection Speed Dependence (3601GL20)

Molding machine : Neomat N47/28 (Sumitomo Heavy Industries, Ltd.) Injection pressure : 130MPa Resin temperature : 360°C Bar flow width : 8mm Mold temperature : 140°C

Effect of Mold Temperature

Thin-wall flowability is not affected by mold temperature so much. However, it is recommended to raise the mold temperature to at least 160°C if problems such as sticking in the mold, poor surface appearance, or low weld strength occur.

injection pressure . 150w

Injection speed : 75%

Resin temperature: 340°C

Bar flow width : 8mm

4-3 Injection Molding Machine and Mold Design

Selection of Injection Molding Machine

SUMIKAEXCEL PES can be molded using standard in-line type injection molding machines and plunger (preplasticating) type injection molding machines.

Screw and Cylinder

- Since the filler reinforced grades of SUMIKAEXCEL PES are filled with glass fiber, etc., it is recommended to use wear-resistant materials for screws and cylinders.
- A standard full flight type screw is good for SUMIKAEXCEL PES. Sub-flight screws and high mixing screws are not recommended because the residence time in the cylinder may become longer, or the resin temperature may rise above 400°C due to shear heating.
- A typical screw design suitable for SUMIKAEXCEL PES is as follows.
 - L/D (screw length [L]/screw diameter [D]) : approx. 20
 - Compression ratio : around 2 to 2.2
 - Ratio of each zone :

Feed zone : around 55%

Compression zone : around 25%

Metering zone : around 20%

• Screw heads for in-line type injection molding machines are recommended to be equipped with backflow prevention mechanism.

Nozzle

- For the material of the nozzle, the same as those in "Screw and Cylinder" can be used.
- Use of the open type nozzle is suitable. Shut-off nozzles are not preferable because they have a lot of dead space and resin tends to retain in it.
- For the nozzle heater, it is recommended to use an independent temperature controller with PID control.

Injection Unit and Its Control System

- Due to the high melt viscosity of SUMIKAEXCEL PES, it is recommended that injection molding machines with a maximum injection
 pressure of 200MPa or higher be used.
- Screw rotation torque during metering tends to be large also due to high melt viscosity, so it is recommended that injection molding
 machines with high power plasticizing units be used.

Injection Capacity

It is recommended to select a molding machine whose shot size is about 1/3 to 3/4 of its maximum injection capacity. If the shot size is
too small, the residence time of resin in the high temperature cylinder will be longer, and various molding defects are more likely to occur.

Mold Design

As PES has high melt viscosity and low mold shrinkage, the following factors must be taken into account when designing molds.

Mold Materials

- Molds used for making prototypes and for small production lots can be composed of carbon alloy steel for machine structural use (S55C). However, these molds should be hardened by quenching if they are to incorporate sliding core parts.
- When mass production and high dimensional precision are required, it is recommended that steels having greater rigidity be used, such as chrome molybdenum steels (SCM435 and SCM440) or alloy tool steels (SKD11 and SKD61).
- Before using a material other than the above, carefully consider whether there are any problems. (Cu alloys, etc., are not recommended as mold materials.)

Sprue

- The length of the sprue should be designed as short as possible, and it is recommended that the taper angle be enlarged (up to 5°).
- A sprue lock should be installed in order to secure better sprue release, as shown in Figure 4-3-1.

Figure 4-3-1 Sprue Diagram

Runner

- Runners are preferred as thick and short as possible. The thickness and length should be determined with consideration of resin flowability.
- Runners should have a circular or trapezoidal cross-sectional shape.
- Considering the gate balance is also important.

Figure 4-3-2 Runner Cross-Sectional Diagram

Gate system

Side gate

• For rectangular gates, it is most efficient to use deep lands with short lengths. The appropriate land length is 1mm or less, and the land gate depth should be about 70% of the wall thickness of the molded products.

Figure 4-3-3 Side Gate Diagram

Pinpoint/Submarine Gate

• The gate diameter should be between 0.8 to 1.2mm, with land lengths of 1mm or less. If flow length are long, it is preferable to have multi gates rather than to enlarg the gate diameter.

Figure 4-3-4 Pinpoint/Submarine Gate Diagram

Film gate

• The preferred gate depth should be equivalent to "the wall thickness of the moldeding products x 0.5". The land length should be 1mm or less.

Figure 4-3-5 Film Gate Diagram

Draft Angle

- As PES has low mold shrinkage, draft angle should be in the range of at least 1° (1/60) to 2° (1/30). For deeper cavities, a larger draft angle would be recommended.
- As thin-walled products tend to be overfilled, a larger draft angle is recommended.
- Larger draft angles are also recommended for glass fiber reinforced grades.
- If adequate draft angles cannot be utilized due to the shape of the molded products, it may be necessary to install slide cores or devise some good ejection methods.

Air Venting (Gas Drainage)

- The recommended depth for air vents ranges from 0.01 to 0.05mm. SUMIKAEXCEL PES has high melt viscosity, so flash defects will not easily occur even when 0.05mm air vents have been installed.
- Air vents must be installed for the molding of thin-walled products.

4-4 Use of Recycled PES

When mixing recycled PES (re-pelletized or regrind) with virgin pellets, it is necessary to adjust the mixing ratio according to the grade and application. Table 4-4-1 shows the recommended mixing ratios of recycled PES for each grade.

Table 4-4-1 Recommended Mixing Ratios of Recycled PES

Grade	Ratio of recycled PES (%)
4100G / 4800G	30 or less
3601GL20 / 4101GL20	20 or less
3601GL30 / 4101GL30	10 or less

Non-reinforced grades may darken the color of the molded products and become brittle if too much recycled PES are used. For glass fiber reinforced grades, the amount of recycled PES that can be added is limited to smaller quantities because the glass fibers shorten during re-pelletizing or regrinding, which result in a loss of mechanical strength. Table 4-4-2 shows the impacts on mechanical properties when recycled PES is used for SUMIKAEXCEL PES.

Table 4-4-2 Impacts of Using Recycled PES against SUMIKAEXCEL PES on Tensile Properties

Grade)	4100G / 4800G			3601GL20 / 4101GL20		
Ratio of recycle	d PES (%)	30		100		30	100
Proper	Property Tensile strength (MPa) Mode of break Tensile strength (MPa) Mode of break		Tensile strength (MPa)	Tensile strength (MPa)			
	Virgin	86	Ductile	86	Ductile	126	126
	1	87	Ductile	87	Ductile	126	121
Number of	2	89	Ductile	87	Ductile	125	116
recycling times	3	88	Ductile	87	Ductile	126	109
	4	88	Ductile	88	Ductile	124	102
	5	89	Ductile	87	Ductile	122	98

5. Secondary Operations

5-1 Adhesives

Commercially available general adhesives (such as epoxy, acrylic, phenol, polyurethane, polyester, and vinyl resin) can be used with SUMIKAEXCEL PES. For recommendations on how to use a particular adhesive, contact the adhesive manufacturer.

Table 5-1-1 Adhesives for SUMIKAEXCEL PES

Туре		Name	Manufacturer
	2-component type	Eccobond 104, 144B	Henkel
Epoxy-based	Epoxy-based 1-component type	Sumimac ECR9000 Series	Sumitomo Bakelite
		Technodyne AH-3063R	Taoka Chemical
Rubber-based		Hamatite PL605-50	Sika Hamatite

Table 5-1-2 Adhesive Strength of Each Adhesive

Table 5-1-2 Adhesive Strength of Each Adhesive (Unit : MP						
Adhesive	4100G	4101GL30				
Eccobond 104	180°C×1hr	5.4	8.8			
EccoBond 144B	150°C×1hr	2.0	3.5			
Sumimac ECR9000 Series	100°C×1hr	4.6	6.7			
Hamatite PL605-50	250-300°C×5min	13.0	-			

5-2 Welding

As SUMIKAEXCEL PES is an amorphous resin, a welding is relatively easy to perform if both pieces to be bonded are made of SUMIKAEX-CEL PES. Table 5-2-1 shows typical welding methods and features that can be used for welding SUMIKAEXCEL PES. Since features depend on the welding method, it is necessary to consider the size and shape of a product, the characteristics required for the product, and economic efficiency (equipment price, cycle, etc.) when selecting it.

Table 5-2-1 Welding of SUMIKAEXCEL PES

Welding m	ethod	Hot plate welding	Ultrasonic welding	Vibration welding	Laser welding	IR welding	CVT (IR+Vibration welding)
	Welding strength	E	E	E	E	G	E
	Appearance of welded area	Р	G	G	E	Е	Е
Weldability	Weldable resin	Thermoplastic resin	Thermoplastic resin	Thermoplastic resin	Light transmitting resin Light absorbing resin	Thermoplastic resin	Thermoplastic resin
	Welding time	10-30sec	0.1-5sec	2-10sec	2-15sec	10-30sec	5-30sec
	Weldable size	Heater size- dependent	Business card size	Pallet size	About A3 size	Instrument panel size	Instrument panel size
Decign	Product shape restrictions	Limitation on heater shape	Basically flat	Some 3D shape	Highly flexible	Superior to vibration welding	Highly flexible
Design	Welding area design	Dedicated design	Dedicated design	Dedicated design	Dedicated design	Dedicated design	Dedicated design

* There is a case that it doesn't weld because the softening temperature of PES is high.

E: Excellent, G: Good, P: Possible

5-3 Ultrasonic Welding

As SUMIKAEXCEL PES is an amorphous resin, an ultrasonic welding is relatively easy to perform if both pieces to be bonded are made of SUMIKAEXCEL PES. Three welding combinations are possible:

- 1. Both pieces are non-reinforced grades
- 2. A non-reinforced grade is to be bonded to a fiber reinforced grade
- 3. Both pieces are fiber-reinforced grades

Case 1 is the easiest to accomplish and results in the greatest weld strength. However, cases 2 and 3 have adequate weld strengths and have better weld characteristics than crystalline resins (e.g., PPS).

The conditions for ultrasonic welding will vary depending on the output of the welding horn, the product shape, welding area, and grade. The standard conditions are as follows:

Table 5-3-1 Standard Conditions for Ultrasonic Welding

Pressure (MPa)	30-60
Amplitude (µm)	50-80
Welding time (sec)	0.1-2.0

Measurements of shear strength after ultrasonic welding are shown below. The test method and test pieces used are as follows:

Ultrasonic welder SONOPET- 1200B (Seidensha Electronic Industry Co., Ltd.) Nominal output : 1200W Oscillation frequency : 19.5kHz Applied pressure : 18N Amplitude : 34µm

Figure 5-3-1 Test Piece for Shear Strength Measurement of Welded Area

			(Unit : N)			
		Oscillation time (sec)				
	0.1	0.1 0.2 0.3				
3600G	680	700	Rupture outside the welded area			
3601GL20	660	850	Rupture outside the welded area			
3601GL30	740	830	Rupture outside the welded area			

Table 5-3-2 Maximum Load at Fracture of Welded Area (Tensile Shear Test)

5-4 Laser Welding

Laser welding is a method where laser light is used to generate heat at the interface with the welding target. When laser welding is used for resin, "light-transmitting resins (thickness 0.5mm)" and "light-absorbing resins (thickness 0.8mm)" are combined. Laser welding is possible with SUMIKAEXCEL PES since it has excellent light transmittance.

Figure 5-4-1 Test Conditions for Laser Welding

Table 5-4-1 Laser Welding Strength

Gra	ade	Laser conc			
Light transmitting resin (0.5mm think) (0.8mm thick)		Output (W)	Travel speed (mm/s)	(MPa)	
			10	30	
4100G	4100G B	3	15	33	
			20	34	
			10	38	
3601GL20	3601GL20 B	3	15	37	
			20	37	

Tensile test speed : 2mm/min

Welding strength (MPa) = Maximum strength (N) / Area (mm²)

6. PES Applications

6-1 Electrical and Electronic Components

SUMIKAEXCEL PES has been used in a variety of electrical and electronic components due to its features such as low outgassing, dimensional stability, creep resistance and resistance to cleaning solvents:

Typical Applications in Electrical and Electronic (Components
---	------------

Relay base . Switch base

Fuse case

•

- Coil bobbin
 - Burn-in socket
 - Cases and covers for various sensors
- Printed circuit board
- , etc.

- Movable plate (block of electrodes) ۲
- Connector
- IC Tray

These are sockets used for burn-in tests (tests that accelerate deterioration of electronic device samples by applying temperature and voltage loads to reduce initial defects), and test samples include semiconductors and memory modules. These take advantage of the excellent heat resistance, dimensional accuracy, and dimensional stability of SUMIKAEXCEL PES.

- SUMIKAEXCEL ES5340
- SUMIKAEXCEL ES5340 is an ultra-high flow grade that has improved flowability over 3601GL20.
- SUMIPLOY GS5620

SUMIPLOY GS5620 is a low-wear, high-strength grade with improved sliding performance.

Table 6-1-1 Grades of SUMIKAEXCEL PES for Burn-in Sockets

Grade		Features		
SUMIKAEXCEL	3601GL20	20% Glass fiber reinforced, high flow		
	3601GL30	30% Glass fiber reinforced, high flow		
	4101GL20	20% Glass fiber reinforced, standard		
	4101GL30	30% Glass fiber reinforced, standard		
	ES5340	20% Glass fiber reinforced, ultra-high flow		
SUMIPLOY GS5620		30% Glass fiber reinforced, wear-resistant		

Figure 6-1-1 Flow Length of 1mm Thickness of SUMIKAEXCEL ES5340

The required performance for burn-in socket materials depends on the application. Please contact us when selecting a grade.

6-2 Automotive and Machinery Parts

Non-reinforced grades are good for parts that require surface smoothness and transparency, and fiber reinforced grades are good for parts requiring higher strength and rigidity. The SUMIPLOY series can be used for parts that require good sliding properties. PES has excellent rigidity over a wide temperature range (-100 to 180°C), dimensional stability, creep resistance at high temperatures, and chemical resistance to gasoline and engine oil. The SUMIPLOY series have also excellent sliding characteristics Typical applications in automotive and machinery parts are as follows.

- Automotive lamp components (reflectors, lens holders, etc.) Fuse case
- Oil pumps
 Bushings for brake shafts
- Thrust washers
- Sprues for oil control valves Gears , etc.

Application Examples of SUMIKAEXCEL PES in Automotive Parts

SUMIKAEXCEL PES has good heat resistance and excellent dimensional stability, so it can be used for the parts in engine rooms and lamp components. Figure 6-2-1 shows application examples in automotive parts.

Figure 6-2-1 Application Examples of various grades of SUMIKAEXCEL PES in automotive parts

Automotive Lamp Components

SUMIKAEXCEL 4100G has been used for automotive lamp components such as reflectors because of its low outgassing at high temperatures, in addition to its excellent heat resistance and dimensional stability.

Figure 6-2-2 Lamp Reflector

Oil Control Valve

SUMIPLOY CS5530 has the nature of extremely high dimensional stability, and its injection molded products can achieve dimensional accuracy almost equal to that of machined aluminum alloy products. Taking advantage of this property, SUMIPLOY CS5530 is applied to sprues of oil control valves.

Figure 6-2-3 Sprue of Oil Control Valves

6-3 Other Injection Molding Applications

OA/AV Device Components

Taking advantage of its dimensional stability, excellent creep properties, and good sliding properties, PES can be applied in the following applications.

- Various oil-less bearings, guides and gears for copiers and printers
- Optical pickup components , etc.

Applications Exposed to Hot Water (Cooking Utensils, Medical Equipment Applications, etc.)

Taking advantage of its hot water resistance, steam resistance (160°C), dimensional stability, and creep resistance, PES can be applied in the following applications.

- Valve joints for hot water and steam
 Insulating materials for corrosion-resistant electrodes
- Temperature sensor cells
 Hot water pump parts
 Ultrafiltration system parts
 , etc.

Plastic Substrate for LCD (including Extrusion Processing)

PES films made by injection molding or extrusion processing have excellent transparency (89% total light transmittance), heat resistance, and dimensional stability, and those with ITO (indium tin oxide) thin layer formed by vapor deposition are used as LCD substrates for the following electronic devices.

Card type calculators
 Pagers
 Electronic organizers
 , etc.

6-4 Food Contact Applications

SUMIKAEXCEL PES has good heat resistance of about 200°C and has excellent impact resistance and steam resistance, so it is good for steam cookers and for cookwares and tablewares for foods containing fats and oils. Some grades of SUMIKAEXCEL PES comply with the regulations for food contact materials in various countries.

Features

- High heat resistance and cold tolerance
- · Cooking is possible at a wide temperature range of -40°C to 200°C.
- \cdot Capable of being used in freezers and also of cooking oily foodstuffs.
- · Resistant to rapid temperature changes, such as quick freezing and microwave oven heating from frozen.
- \cdot Microwave ovens can be used.
- · Steam cooking is applicable.
- Thermal conductivity
- · With moderate thermal conductivity, heat is transferred to the ingredients evenly during cooking.
- · When removed from the heat source, it cools relatively rapidly that allows for quick and safe handling.
- High durability
- · Excellent durability allows for long-term use.
- · Washing with common detergents and bleaches is possible.
- \cdot Use under conditions where metals would corrode is possible.
- · Applications where the product is repeatedly exposed to hot water or steam are also possible.

Safety

- · Some grades of SUMIKAEXCEL PES comply with the regulations for food contact materials in the United States, Europe, and Japan.
- · Even when heated to high temperatures, there is almost no gas emission or leaching of components.
- \cdot Resistant to impact and not easily broken.
- Lightweight
- · Lightweight and easy to carry and handle.
- Design
- · The original color is light amber, and it is transparent with calm tones.
- · Various shapes and designs can be applied due to its good processability. Also, various processing methods can be selected.
- \cdot Coloration is possible.

Figure 6-4-1 Examples of PES Injection Molded products in Food Contact Applications

Tableware

Tray (for in-flight meals)

6-5 Application of SUMIPLOY

SUMIPLOY E is a sliding material that is composed mainly of heat-resistant polyethersulfone (PES) and SUMIKASUPER E101, and has the best sliding characteristics among the sliding materials that can be used for injection molding. It does not easily cause scratches to other materials even on soft metals such as SUS or aluminum.

SUMIPLOY S is a sliding material based on PES that has good sliding properties while maintaining the mechanical and thermal properties of PES. Because of its low coefficient of friction and low wear, it is good for applications requiring a certain degree of mechanical strength under relatively mild sliding conditions.

SUMIPLOY K is a sliding material based on polyetheretherketone (PEEK). It provides good sliding properties while maintaining the original excellent chemical resistance, fatigue resistance, radiation resistance, and heat resistance of PEEK. It is good for use under harsh conditions such as high temperatures and high loads.

Grade Selection

Be sure to select multiple types from the table based on the characteristics and conditions required for the intended use, and the general properties and friction and wear property data for each grade. Next, carry out an evaluation test using the actual machine to select the best grade.

Table 6-5-1 Features of SUMIPLOY Grades

Grade		Features	
Non-reinforced grade (suitable for soft materials such as aluminum)	SUMIPLOY S series	FS2200	 Has heat resistance of 180°C. The coefficient of friction and the coefficient of wear are low and stable even in the dry state.
	SUMIPLOY E series E3010		No damage to the mating material. The coefficient of wear is low even in the dry state. Has a high limiting PV.
	SUMIPLOY S series	CS5220	 Excellent in dimensional accuracy. Shows a high limiting PV.
Fiber reinforced grades		CS5530	· Very excellent in dimensional accuracy.
		GS5620	· Excellent in dimensional accuracy.
Fiber reinforced grade (suitable for high speed and high load)	SUMIPLOY K series	CK3420	 Low molding shrinkage, low coefficient of linear thermal expansion, and excellent dimensional accuracy. Shows high limiting PV in the low to high speed range.

Table 6-5-2 Grade Selection Guide for SUMIPLOY

Required characteristics / conditions of use		Non-reinforced	Non-reinforced sliding grades		
Required characteristics / conditions of us	Se	E3010	FS2200	CK3420	
The mating material is a soft metal (alumi	num, SUS, etc.)	E	G	Ν	
The mating material is a metal with high s	surface hardness	G	G	E	
	For low speed and low load	E	E	Ν	
Stable low coefficient of friction	For medium speed and medium load	E	Р	Р	
	For high speed and high load	Р	N	G	
Dimensional stability against humidity		Р	Р	E	
Dimensional stability against temperature	(low linear expansion)	Р	Р	E	
Dimensional stability against thermal agin	G	G	Р		
Load bearing deformation (creep property	Load bearing deformation (creep property)			G	
High strength, high rigidity, edge characte	Р	G	E		
Fatigue strength		Р	Р	E	
Impact resistance strength		G	E	G	
	200 to 250 °C	Р	Р	E	
Operating environment temperature	-50 to 20 °C	G	G	G	
	Hot water and steam	G	G	E	
	organic solvent	Р	Р	E	
Operating environment atmosphere:	Acid and alkali	G	G	G	
	Radiation	Р	Р	E	
Surface roughness of mating metal	1.5S or more	Р	G	E	
Molding processability (flowability, etc.)		G	G	Р	

E: Excellent, G: Good, P: Possible, N: No

Version 04 / Nov. 2023

*48hr

Table 6-5-3 Sliding Characteristics of Same and Different Types of SUMIPLOY Resins

P=0.2MPa				P=0.5MPa			
	Limiting PV Value	Min. µ	µ-stability	Limiting PV Value	Min. µ	µ-stability	Wear coefficient*
FS2200 - FS2200	100	0.06	E	150	0.08	E-G	9.7×10 ⁻⁵
E3010 - E3010	70	0.11	E	125	0.08	E	1.7×10 ⁻⁵
FS2200 - E3010	80	0.1	E	125	0.09	E	-

E : Excellent, G : Good

Figure 6-5-1 Photograph of a Molding of SUMIPLOY

Applications

- Applications where the use of lubricating oil causes contamination of the product Spinning machinery, food processing machinery, ice making machinery, packaging machinery, air compressors, etc.
- Applications used at high or low temperatures (temperatures at which oil and grease deteriorate or solidify) Furnace belts, conveyors, bogies, dryers, refrigeration equipment, copiers, and OA equipment, etc.
- Applications for machines that are difficult to lubricate Elevators, drainage pumps, and general industrial machinery
- Applications used in dusty areas Construction machinery and spinning machinery
- Applications for operation in chemicals Chemical pumps, gasoline metering equipment, agitators, and general chemical machinery
- Applications where soundproofing and muffling are important Brakes, clutch, and engine area
- Applications where rusting is a problem Automobile undercarriage and equipment that uses steam

7. Powder Applications of PES

Features of SUMIKAEXCEL PES Powder

Powder grades of SUMIKAEXCEL PES are suitable for the following applications:

- Adhesives and paint and coating compounds in solvent solutions
- Hollow fiber membranes and cast films (flat films) in solvent solutions
- Compounds and epoxy reinforcing applications

The following powder grades are available.

Table 7-1 SUMIKAEXCEL PES Powder Grades

Powder Grade	RV (reduced viscosity)*	Main applications		
3600P	0.36	Compound		
4100P	0.41	Paints and coating agents, and adhesives		
4800P	0.48	Hollow fiber membranes and adhesives		
5003PS	0.50	Paints and coating agents, adhesives, and epoxy strengthening agents		
5200P	0.52	Hollow fiber membranes		
5900P	0.59	Hollow fiber membranes		

The reduced viscosity is measured in a 1% solution of dimethylformamide (DMF).

Table 7-2 Grade Lineup for SUMIKAEXCEL PES

Reduced viscosity		0.36	0.41	0.48	0.52	0.59
Powder		3600P	4100P	4800P	5200P	5900P
		5003PS*				
	Unreinforced	3600G	4100G	4800G		
Pellet Glass fiber reinforced		3601GL20	4101GL20			
		3601GL30	4101GL30			

* End OH containing grade

Physical Properties of SUMIKAEXCEL Powder Grades

Properties of SUMIKAEXCEL 3600P, 4100P, and 4800P

To obtain the physical properties for the following grades: 3600P, 4100P, and 4800P, please refer to the physical properties for pellet-type grades: 3600G, 4100G, 4800G.

Table 7-3 Physical Properties of 3600G, 4100G and 4800G

		Test method	Unit	3600G/4100G/4800G
	Density	ISO 1183	g/cm ³	1.37
General Physical	Mold shrinkage (MD)	Internal	%	0.60
Properties	Mold shrinkage (TD)	Internal	%	0.60
	Water absorption (23°C, 24hr)	ISO 62	%	1.0
	Tensile strength	ISO 527-1,2	MPa	85
	Tensile yield strain	ISO 527-1,2	%	6.5
Mashaniaal	Flexural strength	ISO 178	MPa	130
properties	Flexural modulus	ISO 178	MPa	2,600
F .F	Izod impact strength (unnotched)	ISO 180/1U	kJ/m ²	Does not break
	Izod impact strength (notched)	ISO 180/1A	kJ/m ²	8
	Rockwell hardness (M scale)	ISO 2039-2	-	95
Thermal properties	Deflection temperature under load (0.45MPa)	ISO 75	°C	214
	Deflection temperature under load (1.80MPa)	ISO 75	°C	205
	Coefficient of linear thermal expansion (MD)	ISO 11359-1,2	10 ⁻⁵ /K	5.5
	Coefficient of linear thermal expansion (TD)	ISO 11359-1,2	10⁻⁵/K	5.5
	Relative dielectric constant (dry:100Hz)	IEC 62631-2-1	-	3.5
Electrical properties	Relative dielectric constant (dry:1MHz)	IEC 62631-2-1	-	3.4
	Relative dielectric constant (dry:1GHz)	IEC 60250	-	3.4
	Dielectric dissipation factor (dry:100Hz)	IEC 62631-2-1	-	0.002
	Dielectric dissipation factor (dry:1MHz)	IEC 62631-2-1	-	0.004
	Dielectric dissipation factor (dry:1GHz)	IEC 60250	-	0.004
	Volume resistivity	IEC 62631-3-1	Ω·m	>1013
	Dielectric strength (1mm)	IEC 60243-1	kV/mm	43
	Tracking resistance	IEC 60112	V	150
Flommobility	Flame retardant rank	IEC 60695-11-10	-	V-0
Flammability	Limiting oxygen index (1.6mm)	ASTM D2863	%	38

Properties of SUMIKAEXCEL 5003P and 5003PS

- SUMIKAEXCEL 5003P/5003PS is an amorphous resin that has a glass transition temperature of 230°C.
- Possesses excellent adhesive properties due to the large number of terminal hydroxyl groups, which range from 0.6 to 1.4 per 100 polymer repeating units.
- All other properties are similar to those of other grades of SUMIKAEXCEL PES.

Paint and Coating Applications

SUMIKAEXCEL 4100P and 5003PS grades are utilized as paints and coating agents. The following characteristics have been specially enhanced in the 5003PS grade: hardness after heating, chemical resistance, and adhesion toward metals. This section describes the paints and coating agents that use SUMIKAEXCEL 5003PS.

Features of Paints and Coating Agents of SUMIKAEXCEL 5003PS

- Stable even after long periods of usage in the air at a temperature of 250°C, and when used under conditions of repetitive heating and cooling cycles (between 0°C and 250°C).
- Adhesive properties and bonding: Demonstrates outstanding adhesion to glass, ceramic, iron, stainless steel, aluminum, and aluminum alloys.
- Solvent resistance: Demonstrates the highest solvent resistance among most amorphous resins.
- Resistance to hydrolysis: Polyethersulfone resin itself has outstanding hydrolysis resistance, yet 5003PS possesses even greater resistance to hydrolysis.
- Film formation properties: Has superior film formation properties and provides effective protection for base materials.
- Flame retardancy: Has high flame retardancy without utilizing any flame retardant components.
- Transparency: Has excellent transparency and does not change the appearance of the base material, even after application.
- Hygienic properties: Does not contain additives, such as plasticizers, thus making it highly hygienic.

Coating Procedures for SUMIKAEXCEL 5003PS (Example of Solution Method)

- Remove all oil and grease from the base material. If necessary, sandblast or etch the surface.
- Dissolve 5003PS in a solvent solution.
- Apply this solution to the base material, using any of the following methods: immersion, brush application, or spraying. Allow to air dry for 20 minutes.
- Heat-treat the material in hot air at a temperature of 350 to 400°C for 30 minutes.

Gelation Prevention

The SUMIKAEXCEL PES solution may become a gel, and it is described as liquid crystal related to both PES molecules and the solvent.

(Features)

- The solution may become cloudy and the whole solution may solidify.
- If a gel is formed, it is difficult to dissolve again even if a solvent is added.
- The gel is the core of the gelation of the ungelatinized solution.
- The gel is the core of the gelation of the ungelatinized solution.
- By applying temperature, it melts and returns to the original solution.

(Gelation prevention)

- Do not apply excessive shear stress. Do not use a homogenizer.
- Do not leave PES in a highly concentrated state for a long period of time. Do not leave swollen PES in unstirred solvent.
- The use of mixed solvents is recommended.

Concentration-Viscosity Correlation

The following figure shows the concentration-viscosity correlation of NMP solutions of SUMIKAEXCEL 4100P and 5003PS.

Figure 7-1 Concentration-Viscosity Correlation of NMP Solutions of SUMIKAEXCEL 4100P and 5003PS

Heat Resistance of SUMIKAEXCEL 5003PS Coating on Aluminum Sheet (Example)

Table 7-4 Heat Resistance Under Continuous Service (in the Air at a Temperature of 250°C)

Evoluction itomo	Time (hr)			
Evaluation items	0	115	235	
Change in appearance	-	No change	No change	
Cross-cut Adhesion Test*1	100/100	100/100	100/100	
Corrosion Resistance Test*2	No corrosion	No corrosion	No corrosion	

Table 7-5 Repetitive Heating and Cooling Cycle Test (2 minutes in ice water at 0°C↔ 2 minutes in oven at 250°C)

Evaluation itoms	Number of cycles (times)			
Evaluation items	0	25	50	
Change in appearance	-	Almost no change	Slight occurrence of foam around edges	
Cross-cut Adhesion Test*1	100/100	100/100	100/100	
Corrosion Resistance Test*2	No corrosion	No corrosion	No corrosion	

(*1) The test procedure for cross-cut adhesion is as follows: Using a safety razor, create a mesh of intersecting cuts (the shape of lines on a checkerboard) into a base material that has been coated with SUMIKAEXCEL 5003PS. The cuts must be deep enough to reach the base material and should be spaced 1mm apart, to form a series of 1mm x 1mm squares, over an area of 100mm2. Place adhesive tape over the area of the cuts and apply pressure, then remove the tape. Check the squares to determine the number of squares that still contain the PES coating.

(*2) The test procedure for corrosion resistance is as follows: Place several drops of a solution containing 15% (vol) nitric acid onto the test surface that has been coated with SUMIKAEXCEL 5003PS. Cover the surface with a glass plate and let it stand for 24 hours. Observe any changes in the surface appearance.

Applications as Impact Modifier for Epoxy Based Systems

SUMIKAEXCEL 5003PS is utilized in the creation of epoxy-based composite materials. The advantages of adding SUMIKAEXCEL 5003PS to epoxy-based composites are as follows:

- Improves the breaking strength of epoxy.
- Has a very high Tg.
- Has excellent mechanical properties(Table 7-8).

Enhancing the Plasticity of Epoxy Resins

SUMIKAEXCEL 5003PS is essentially plastic in behavior, thus has both a high Tg and flexural modulus. Therefore, it has the ability to add plasticity to epoxy resins without degrading the overall performance of the composite itself. The table below indicates a large increase in breaking strength (G1C). It is also apparent that Tg does not decrease significantly.

Table 7-6 Effects When Blended with TGDDM / 4, 4'-DDS

Concentration of 5003PS (%)	Flexural modulus (GPa)	Tg(°C)	Gic(kJ/m²)
0	3.34	205	0.28
10	3.21	205	0.41
15	3.07	200	0.47

(Note)

1) G1c values were measured under flat surface 2) Tg values were measured using torsion DMA.

distortion conditions at -65°C.

Results of Comparing Epoxy Resin and As4CF at a Polymer Concentration of 30% (wt)

Table 7-7 Comparison between SUMIKAEXCEL PES and PEI

Evaluation items	Unit	PEI	5003PS
CAI (Compression after impact)	MPa	194	223
Compressive Strength	MPa		
(Room Temperature)		1697	1731
(82°C)		1434	1648
(82°C)/Wet		N/A	1076
Viscosity at 88°C		130	100

N/A : no data available

Application of SUMIKAEXCEL PES to Aircraft and Sporting Goods Fields

Epoxy thermosetting resins are utilized as the resin matrix in CFRPs (carbon fiber reinforced polymers).

Although epoxy resins possess excellent mechanical and thermal properties, it is more susceptible to fracture than thermoplastic resins. For applications in the area of aircraft and sporting equipment, it is mandatory that its fracture toughness (compression after impact [CAI] strength) is improved. If 5003P is added to epoxy resin, a reaction occurs, which increases the resin's plasticity, toughening it against impact fractures that may cause delamination within the resin matrix.

Procedures for SUMIKAEXCEL 5003P

The 5003P is dissolved directly in the epoxy base resin and mixed until a homogeneous solution is obtained. Next, the hardener is mixed into the solution. As the epoxy mixture hardens, it reacts with the hydroxyl radicals in the 5003P, forming a special morphology that contains a "sea island structure" (matrix and discontinuous phase), thus providing improved impact resistance. Either of the two following procedures can be utilized in order to obtain a homogeneous solution of 5003P in epoxy base resin: the 5003P can be ground finely and dissolved directly in the epoxy base resin in an N₂ atmosphere at a temperature of approximately 150°C. Alternately, the 5003P can first be dissolved uniformly in a solvent, then the solvent is later removed. The epoxy base resin is then mixed into this remaining compound to obtain a homogeneous solution.

- Amounts of 5003P for Usage in Composites (Example)
- Per unit of matrix range
 Enoxy base resin (100 pbr
 - Epoxy base resin (100 phr) : Hardening agent (30 to 40 phr) : 5003P (30 phr)
- Per unit of prepreg Up to 10wt%
- Usage in Aircraft Structural Composites

In order to utilize 5003P in structural composites for aircraft, precisely-sized fine particles of 5003P (tough balls), are sprinkled onto the surface of CF prepreg, which has been produced according to the above section entitled "Procedures for SUMIKAEXCEL 5003P". Next, several dozen of these CF prepreg layers are laminated together. This process improves the impact resistance, due to the PES particles that are located on the boundaries of each surface.

Furthermore, a variety of creative laminating methods have also been invented thus far.

- (Example : structural composite standards for Boeing aircraft)
- CAI (compression after impact) value must be 310MPa or greater
- CS (compressive strength under hot/wet conditions) value must be 1,100MPa (at 82°C) or greater.

Adhesive Applications

SUMIKAEXCEL PES can be utilized as a heat resistant adhesive. It possesses particularly outstanding adhesive strength toward metals.

Features

- Bonded surfaces possess high tensile adhesive shear strength and T-peel adhesive strength. Its characteristics are well balanced, as it
 also possesses both rigidity and flexibility.
- PES possesses the highest heat resistance of most commercial thermoplastic resin adhesives. It possesses an extremely high tensile fracture adhesion strength of 20MPa, even at a temperature of 200°C.
- As well, for short periods of time, it can be utilized repeatedly at temperatures of up to 250°C.
- PES has outstanding chemical resistant and heat resistant properties.
- PES does not contain any solvents or volatile components and demonstrates excellent adhesion toward a variety of materials, including unprimed metals such as aluminum, stainless steel, steel, and brass.

Adhesion Method

- Hot melt type adhesion method using SUMIKAEXCEL PES film
 - Cut the film to the size of the objects being bonded (adherends).
 - Roughen the adherend surfaces using sandpaper or a disc sander, then clean the surfaces with acetone or toluene.
 - Sandwich the film between the adherends, apply a small amount of pressure using a jig, then heat the joint for 10 to 30 minutes at a temperature of 300 to 360°C. An adequate level of pressure will be achieved if the melted resin just begins to ooze out from between the adherends, as flash.
 - A strong bond will be obtained if the joint is left to stand in cold conditions.
- Adhesion method using an adhesive solution Solvent Solutions for SUMIKAEXCEL 5003PS
 When 5003PS is dissolved in a single solvent, it is unstable and PES precipitates, so a mixed solvent system is usually used. (Solution stability is low in a single solvent, thus causing gelation.)

Table 7-8 Examples of Mixed Solvent Solutions for SUMIKAEXCEL 5003PS

Solvent	Solvent	Mixing ratio (volume ratio)
	Dimethylformamide	20
A	Cyclohexanone	80
	Methyl ethyl ketone	25
Р	N-methyl-2-pyrrolidone	2
D	Toluene or xylene	1
	N-methyl-2-pyrrolidone	60
6	Toluene or xylene	30
	Silicon flow modifier	0.5-1
	Methyl ethyl ketone	35
D	Sulfolane	1
D	-butyrolactone	1
_	Sulfolane	1
E	Acetone or methyl ethyl ketone	1

Adhesion Method

As the strength of PES adhesives will vary depending on the thermal treatment conditions, it is necessary to determine the appropriate conditions in accordance with each particular application.

(Condition 1) Dry for 2 hours at a temperature of 130°C

(Condition 2) Dry for 1 hour at a temperature of 100°C, then continue drying for 15 minutes at a temperature of 350°C

Properties of SUMIKAEXCEL 5003PS Adhesives

It has excellent adhesive strength at high temperatures. For example, Tables 7-9 and 7-10 show the changes in adhesive strength when the temperature increases to 220°C and the results for the adhesive strength retention rate for aging at 150°C when 18-8 stainless steel is bonded together using a SUMIKAEXCEL 5003PS adhesive.

Table 7-9 Effects of Temperature on Peel Strength

Features	Peel strength (MPa)
23	37
150	26
220	14

Retention time at 150°C (hr) Peeling strength at 150°C (MPa)

Peel Strength

0	26
1000	21

Table 7-10 Effects of High Temperatures on Retention Time and

The peel strength was measured at a peel speed of 12.5mm/min.

Cartridge Filters Utilizing PES Membranes (Courtesy of Toyo Roshi)

This cartridge filter is composed of a polyethersulfone (PES) membrane filter and polypropylene. It possesses superior resistance to both heat and chemicals.

Features

- Minimal amounts of eluted substances are produced, thus minimizing the amount of cartridge cleaning required as a pretreatment process.
- As it utilizes asymmetric media and incorporates a pre-membrane filter having a different aperture size, it possesses high filtration efficiency and a high flow rate, thus has a long filtration life.
- Both autoclave sterilization and in-line steam sterilization can be performed.
- As the media itself is inert, sample constituent absorption is very minimal.

Applications

- Precision filtration of ultrapure water in the electronics industry
- Particle removal and disinfecting of process gases and vented air

Even after being held at 150°C for 1000 hours, 81% of the initial adhesive strength is retained.

Figure 7-2

8. Approvals

SUMIKAEXCEL PES conforms to many industrial standards and specifications, and has received certifications. The following is a list of the certifications that have been obtained.

Flame retardancy

SUMIKAEXCEL PES conforms to UL94 V-0. UL is a product safety standard established by Underwriters Laboratories Inc. Standard grades are registered in UL746B.

Food Contact Field

U.S.A.

Confirmed that some grades of SUMIKAEXCEL PES meet the requirements set forth in the "FDA 21 CFR § 177.2440" of the food packaging material regulations in the United States.

Europe

Confirmed that some grades of SUMIKAEXCEL PES meet the requirements determined in the "Commission Regulation (EU) No. 10/2011" for food packaging material regulations in Europe.

Japan

Some grades of SUMIKAEXCEL PES contain ingredients on the positive list under Article 18, Paragraph 3 of the Revised Food Sanitation Act and Notification No. 370. Confirmation certificates issued by the Hygienic Olefin And Styrene Plastics Association have been obtained for SUMIKAEXCEL PES 3600P, 4100P, 4800P, 5200P, 5400P, 5900P, 5003PS, 3600G, 4100G, and 4800G. There are grades other than those listed here, so please contact us for the latest acquisition status. The Japan Hygienic Olefin And Styrene Plastics Association was dissolved in March 2021. Their work was taken over by the Food Contact Materials Safety Center. The confirmation certificate remains valid.

Water Contact Field

NSF61 "Drinking Water System Components" has been obtained for some grades of SUMIKAEXCEL PES. For details, please visit the NSF site https://www.nsf.org/.

Medical Field

Some grades of SUMIKAEXCEL PES have been tested for ISO 10993 and USP CLASS VI. For more information, please contact us.

TECHNICAL NOTE

Ultra-High Heat Resistant Engineering Plastics

SUMIKAEXCEL PES

💠 SUMİTOMO CHEMICAL

Advanced Polymers Division

Sumitomo Chemical Co., Ltd. Advanced Polymers Division High-Performance Engineering Plastics Department Add: Tokyo Nihombashi Tower, 2-7-1, Nihonbashi, Chuo-ku, Tokyo 103-6020, Japan Tel: +81-3-5201-0266 URL: https://www.sumitomo-chem.co.jp/sep/english/ Access: https://www.sumitomo-chem.co.jp/english/company/group/detail/access_tokyo.html Sumitomo Chemical Co., Ltd. Energy & Functional Materials Research Laboratory <Super Engineering Plastics Group> Add: 6, Kitahara, Tsukuba-shi, Ibaraki 300-3294, Japan Tel: +81-29-864-4177 Access: https://www.sumitomo-chem.co.jp/english/company/group/detail/access_tsukuba_03.html Sumitomo Chemical Advanced Technologies, LLC. Add: 3832 East Watkins Street, Phoenix, AZ 85034, USA Tel: +1-602-659-2500 URL: https://sumichem-at.com/ Sumitomo Chemical Europe S.A. / N.V. Add: Woluwelaan 57, B-1830 Machelen, Belgium Tel: +32-2251-0650 URL: https://sumitomochemicaleurope.eu/ Sumitomo Chemical Asia Pte Ltd. Add: 3 Fraser Street, #07-28 DUO Tower, 189352, Singapore Tel: +65-6303-5188 URL: https://sumitomo-chem.com.sg/ Dongwoo Fine-Chem Co., Ltd. Add: 22, Sandanoryon-gil, Samgi-myeon Iksan-si, Jeollabuk-do, 54524, Korea Tel: +82-63-839-2942 URL: https://www.dwchem.co.kr/main.do?lang=eng Sumika Electronic Materials (Shanghai) Corporation Xuhui Branch. Add: Floor 1, Building 91, No.1122 Noth Qinzhou Road, Xuhui District, Shanghai, 200233, China Tel: +86-21-5459-2066 URL: https://www.sumika.com.cn/ Sumika Electronic Materials (Shanghai) Co., Ltd. <Shanghai Technical Center> Add: Floor 1, Building 91, No.1122 North Qinzhou Road, Xuhui District, Shanghai, 200233, China Tel: +86-21-5459-2063 Sumika Electronic Materials (SHENZHEN) Co., Ltd.<Shenzhen Office> Add: Room17G, Nuode Finance Centre, NO.1006 of Fuzhong Road3, Lianhua Street, Futian Distrit, Shenzhen, China P.C:518026 Tel: +86-0755-2598-1596 URL: https://www.sumika.com.cn/

Product details https://www.sumitomo-chem.co.jp/sep/