

環境・安全レポート

千葉工場のレスポンシブル・ケア活動 Responsible Care 2022

住友化学は「レスポンシブル・ケア」カンパニーとして、化学物質の開発から廃棄にいたるすべての過程において、 自主的に安全・健康・環境面の対策を行っています。

レスポンシブル・ケアマークは「日本レスポンシブル・ケア協議会」に加盟している企業が使用できるロゴマークです

本誌は環境配慮型大豆油インキにより印刷されています。 本誌はエコマーク認定の再生紙を使用しています。

ごあいさつ

私たちの豊かな暮らしは、プラスチックをはじめとする多くの化学製品 によって支えられています。しかしこうした化学製品は、誤った取り扱い をすると、時には私たちの健康に害を与えたり、事故や環境問題をひき 起こすおそれもあります。住友化学千葉工場では、製品の開発から製造、 流通、使用、廃棄にいたるライフサイクル全般において、化学物質を取り 扱う事業所として安全、健康、環境、品質の確保のため「レスポンシブル・ ケア(RC)活動」に取り組んでまいりました。

一方、取り巻く環境はといいますと、カーボンニュートラルをはじめと するサステナビリティに関する要求がますます高まってきており、社会に 不可欠な石油化学製品を将来に渡って提供し続けるために、千葉工場 には、新たな技術で、その姿を変えながら、柔軟かつ強靭に対応していく ことが求められています。これを実現すべく、これまで培ってきた技術や 知見を活用し、環境負荷低減技術や資源循環技術の開発・工業化を推 進しているところです。

今後も住友化学の進化した「レスポンシブル・ケア基本方針」のもと、 地域社会やステークホルダーの皆様に信頼していただけるように、また 従業員が安心して働けるように全力を尽くしてまいります。

住友化学株式会社 常務執行役員 千葉工場長 荻野耕一

住友化学グループとSDGs

SUSTAINABLE GOALS

⋖≣▶

SDGsとは、「Sustainable Development Goals:持 続可能な開発目標」の略称であり、2015年9月の国 連サミットで採択された、持続可能でよりよい世界の 実現に向けて2030年までに達成を目指す国連社会 共通の目標です。地球上の「誰一人取り残さない (leave no one behind)」という誓いのもと、17の ゴールと169のターゲットを設定しています。住友 化学グループは、事業を通じて国際社会の重要課題 に取り組み、SDGsの達成に貢献していきます。

千葉工場・研究所 レスポンシブル・ケア委員会 組織図

委員長:工場長

副委員長: 副工場長、エッセンシャルケミカルズ研究所長

環境·安全部長 総務部長 生産管理部長 業務部長 品質管理部長 レスポンシブルケア監理部長 工務部長 製造部長 動力用役部長 工業化技術研究所 研究グループマネージャー (千葉プロセス) エッセンシャルケミカルズ研究所 研究グループマネージャー (環境・安全担当)

2020年4月1日制定

住友化学 レスポンシブル・ケア(安全、健康、環境、品質)基本方針

当社は、「サステナビリティ推進基本原則」、「住友化学企業行動憲章」に則り、 当社グループが、社会の信頼を得て、社会の持続可能な発展に貢献すると共に 自らの持続的な成長を実現するため、安全、健康、環境、品質に関し、当社グルー プ会社と共に以下の事項を最優先事項として取り組む。

- ①「安全をすべてに優先させる」ことを基本に、無事故・無災害の達成による安 全・安定操業を継続する。
- ② リスクに基づき、労働安全衛生、保安防災などの安全に関するパフォーマン ス、及び、自社の設備・プロセス・技術に関わるセキュリティの継続的改善に 努め、従業員や地域社会を含むステークホルダーの安全を確保する。
- ③ サプライチェーン全般にわたって化学品の安全性とプロダクト・スチュワード シップの継続的改善を促進し、化学品管理システムを強化することにより、製 品のライフサイクルにわたる環境と人々の健康・安全の確保に努める。
- ④ 開発から廃棄に至る製品の全ライフサイクルにわたって、環境パフォーマンス の継続的改善を行い、環境保護に努めるとともに、気候変動等の問題解決に
- ⑤ 顧客が満足しかつ安心して使用できる品質の製品とサービスを提供する。
- ⑥ 国内外の法令・規準を遵守することはもとより、自主的な取り組みによりベス トプラクティスの実践に努める。
- ⑦社会の関心と期待に応え、説明責任を果たすため、情報の公表と対話を行う。
- ⑧ パフォーマンスの改善やビジネスチャンスの拡大により、さらには社会課題に 対して革新的技術やその他のソリューションを開発、提供することにより、社 会の持続的発展に貢献する。

以上

千葉工場・研究所 レスポンシブル・ケア管理方針

当工場・研究所が、社会の信頼を得て、社会の持続可能な発展に貢献すると共に自ら の持続的な成長を実現するため、安全、健康、環境に関し、以下を管理方針とする。

- 「安全をすべてに優先させる」基本理念のもと、働く人の協議と参加を尊重して、 危険源の特定とリスク軽減を行い、無事故、無災害を達成する。
- 2. 当工場・研究所の事業活動における環境負荷の評価と低減に積極的に取り組み、 持続的発展が可能な社会構築に貢献する。
- 3. 法的要求事項及び当工場・研究所が特定する要求事項を遵守するとともに、 レスポンシブル・ケア精神に則り、自主的にレスポンシブル・ケア活動を推進し
- 4. 安全衛生管理、保安管理、環境保全管理の目標・計画を制定し、定期的見直しを 実施することにより、レスポンシブル・ケア活動の継続的改善を図る。
- 5. 労働安全衛生マネジメントシステム、保安管理システム、環境マネジメントシステムのPDCAを確認する内部監査を実施し、維持向上に努める。
- 6. レスポンシブル・ケアに関する教育訓練、諸活動を実施し、協力会社、構内グルー プ会社を含めた全ての就業者のレスポンシブル・ケア意識向上を図る。
- 当工場・研究所は『無事故無災害』、『お客様重視』、『地域社会との共存共栄』の基本方針に則り、コンビナートの一員として事業活動を通じ、地域住民・関係諸官庁 等のコミュニケーションを高めて地域社会に貢献する。

千葉工場・品質方針

全部門が仕事の質を高めるとともに、品質マネジメントシステムの継続的改善に努め、 一致協力してお客様の満足、安心と信頼を得る品質の製品を、安定的・経済的・持続的

住友化学株式会社

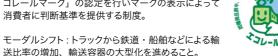
事務局

環境保全

「環境にやさしい企業」、 それが住友化学の創業時からの使命です。

住友の事業は、愛媛県・別子銅山の開発から始まりましたが、銅を製錬する際に発生する亜硫酸ガスが煙害をひき起こし ました。そこで、これを回収し有効利用することを目的として、1913年(大正2年)に「住友肥料製造所」が設置されました。 これが、住友化学の発祥です。このように、住友化学は環境問題の解決を使命として生まれた企業であり、以来、一貫して公 害防止や地球環境の保全に努めてまいりました。

千葉工場では、大量の原材料やエネルギーなどを使用しています。それにともなって発生 する大気汚染物質、水質汚濁物質や化学物質の排出などによる環境への影響(負荷)を軽減 するために、各種の環境処理設備を設置しています。また製造プロセスの省エネルギー化や、 自動車の軽量化に役立つ高性能プラスチックの開発を通じて地球温暖化防止に取り組む一 方、廃棄物のリサイクルを推進するなど、各面にわたる取り組みを進めています。


また千葉工場は、環境マネジメントシステムの国際規格であるISO14001の認証を 1997年に取得。その後2006年3月に2004年版、2018年4月には2015年版の新規格 での認証登録を行いました。また2000年度から、環境投資とその効果を評価する「環境会 計」を導入するなど、環境保全活動のレベルアップを図っています。さらに環境汚染物質の 排出・移動を公表する制度であるPRTRにも積極的に取り組み、化学物質の排出量の削減 に努めています。

地球温暖化防止の取り組み

住友化学は、2009年から国土交通省によりエコレールマーク認 定企業となっています。2013年には千葉工場の樹脂3製品(ス ミカセン、住友ノーブレン、住化フレックス)を含む5製品について 「エコレールマーク商品」の認定を受けました。今後も製品輸送 のモーダルシフトの推進などを通じ、地球環境保全に貢献してま いります。

エコレールマーク制度:地球環境に優しい鉄道貨物輸 送を一定以上利用している商品又は企業に対して「エ コレールマーク」の認定を行いマークの表示によって 消費者に判断基準を提供する制度。

化学反応にともなって発生する多種多様な排水 については、それぞれの性状に応じた処理を施 しています。すなわち、有機物を含む排水につ いては液中燃焼処理や活性汚泥処理、浮遊物質 を含むものについては凝集沈殿処理や砂ろ過処 理、また油分を含むものについては平行板式油 水分離処理を行うなどの総合排水処理システ ムにより、浄化してから排出しています。

2

省エネルギープロセスの開発

住友化学は、気相法ポリプロピレンや気相法低密度ポ リエチレン、単産法プロピレンオキサイド、レゾルシン など、多くの製造プロセスの改良を行い、省エネル ギー、省資源、ひいては二酸化炭素の排出の抑制に、成 果をあげてきました。

大気汚染防止

千葉工場は、自家発電用のボイラーや化学プロセス用 の加熱炉を多数保有していますが、こうした設備で燃料 を燃やしたときに、ばい煙(硫黄酸化物、窒素酸化物、 ばいじんなど)が発生します。ばい煙を大気に排出する のを抑制するために、良質な燃料を使用したり、排煙脱 硫設備、排煙脱硝設備、電気集塵機を設置しています。

排水処理用液中燃焼炉

活性汚泥処理が困難な高濃度の有機物を含んだ排水につい ては、排水処理用液中燃焼炉で燃焼させ、浄化してから、排 出しています。

住友化学千葉工場では、環境に配慮した持続可能な製品や 技術の提供を通じて、資源循環型経済(サーキュラー・エコノ ミー)の実現に貢献していくため、廃棄物由来や植物由来の エタノールを原料とするエチレンの試験製造設備を2022年 3月に新設しました。従来と同等の品質を持つ環境負荷低減 型プラスチックの生産技術の実証と量産化の検討を推進し、 2025年度の事業化を目指します。

保安防災

無事故・無災害はみんなの願い。 常に安全確保を最優先に考えます。

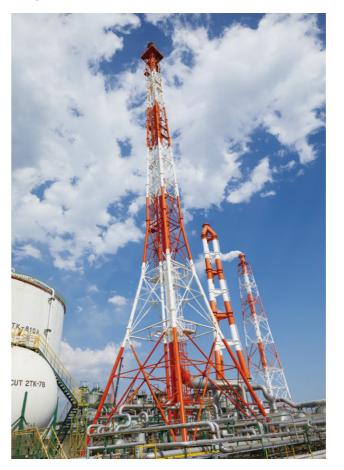
私たち化学会社にとって、火災や爆発事故を起こさないことが、その存立の基盤です。

住友化学千葉工場においては、原料や製品として、大量の危険物や高圧ガスを取り扱っています。そのため、日ごろから 安全・安定操業に全力を尽くし、法律で定められている以上の安全対策を、自主的に実施しています。こうした自主保安の面 で優れている工場を国が認定する制度があり、千葉工場は高圧ガス保安法や、労働安全衛生法に基づいた認定を取得してお ります。

また消防車をはじめとする防火・消防設備や自衛消防組織を有するだけでなく、近隣企業と共同防災協定を結んで、相互 応援体制を築いています。さらに、工場全体あるいは各部門ごとに各種の防災訓練を行うだけでなく、消防署や近隣企業と も合同で訓練を実施し、万一の事故に備えています。

◇ ◇ ★地震に対する対策は?

東海地震など大規模地震のおそれがあると言われていますが、地震予知がなされた場 合には、すみやかにプラントを停止し、安全な状態で地震に対処します。


設備につきましても、危険物タンクに関わる耐震基準適合への改修工事、高圧ガス保安 法に基づく高圧ガス貯槽の耐震対策、改修を進めてきております。

津波の対策としては、2012年から津波を想定した避難訓練を実施しております。また、 護岸(工場の海岸線)やバースについても計画的に改修・補強工事を実施しております。

フレアスタック

プラントのスタート・ストップ時などに発生する余剰の可燃 性ガスを、そのまま大気中に放出すると、火災・爆発事故や環 境汚染をひき起こす恐れがあります。そこで可燃性ガスを完 全燃焼させて安全に排出するための設備が、フレアスタック

消防訓練

千葉工場は、消火栓やスプリンクラー、あるいは化学消 防車や高所放水車、泡原液搬送車など、各種の防火・ 消火設備を有しています。また自衛消防隊の防災訓練、 消防署や近隣企業との合同訓練なども定期的に実施し ています。

パイロットプラント

新製品や新製造プロセスを開発、商業化する場合には、パイロットプラント でテストを行い、プロセスの安全面の確認や、排出物の環境に与える影響な どについても検討し、より安全で効率的な技術の確立に努めています。

牛産安全基盤センター

住友化学が有する生産安全基盤センターで は、保安防災技術や、設備材料の研究開発、 またプロセスの安全性の検証などを行ってお り、千葉工場の無事故・無災害の操業にも大 きく役立っています。

ん学物質の 適正管理

トップレベルの技術力を駆使して 化学物質の適正管理に努めています。

化学物質は、適正な取り扱いをしなければ人や環境に影響を与えかねません。

大阪市にある住友化学の「生物環境科学研究所」は、化学物質の安全性、すなわち化学物質が生物や環境に与える影響の評価を行う研究所です。この分野の研究所としては、規模や技術水準の点で、わが国ではトップレベルであり、その研究成果は千葉工場を含め全社的に活用されています。

また、住友化学が独自に構築した「化学品安全評価システム」を通じて、安全性に関する情報の収集、リスク評価を推進しています。そして収集・評価されたデータは製品の開発、製造、販売に活用されています。

さらに、こうした情報は、化学物質安全データシート(SDS)や、物流事故対策用の緊急マニュアル(イエローカード)などの形で、住友化学の製品を取り扱っていただいているお客様や物流に従事されるすべての方に対して提供されています。

生物環境科学研究所

住友化学は、大阪にある生物環境科学研究所で化学物質の安全 性の研究を行っています。千葉工場の製品も、こうしたトップレ ベルの基礎研究に支えられ、社会の信頼を得ています。

安全対策

住友化学は、お客様や物流会社の皆様の安全対策 のために、化学物質安全データシートや、物流事故 対策用緊急マニュアル「イエローカード」を提供し ています。

						$\overline{}$		- 20	25 7	_	
② 本品は	有事、引	水、暴水。	Tifet, di	SHTA				~			
② 周囲に	determinate	11 - F 4.0	947 F A								
				200			7絵 送 段 階 にお ける				
-			させ近づけ								
事故処	微に当っ	ては保護』	4 (安全機	、保護マスタ	2、ゴム		事政5		の緊急通		
) を適用	ta.					1000	(別紙)	参照の事		
			_								
◎ 事故魁	西手順は	以下の通り	9.								
					_	_		_			
	ス・	チレン	ノモノ	₹ -	事故	. 処 🏗	堂 手川	頁書	消防法療検	en : 20 4 20 1	E 2 石油板
救	急	処	置	車 両	が火	災の場	合	ŧ	h ·	の場	숨
4	30	8	76	*	順	.8.	质	ザ	順	2	26
L REPARK	w.	outre c	(5 P.C)	1. 10E0ACH	44.	manne (よぎてり	1, 100003	Silvery.	9888	107433
r. wax. max	5. 会社に港	作送の人になり		1. 992. 210	e. exica	HEALES	no.	r. 2000.	MANUEL OFFICE	#EnAl	tons.
42 4 5 . 42 5 1 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n-niz26	01tt. 44.	461259	10+6.		03 St. 46/6	4.851	1016.		62 (I), A	M. 2279
(KEYS517	100590			Catalings over 10				100	100991		
L SERVINGERALITOR.				1 204757978		militar out			424X+74.		
z, Allicidaria	· 41-94905	EV.C.				CHESTAN			INLTHABOA		goer, mon
A ESOPERIO		BITEDIE		I. RUDAMU	MATE.	294724	n. 18	=eus			SCHOOL S.
4、ガスを挿入した		BROWNS:	51t&.			以数41. 位		CAR	50000)	T	
E MILMANNE		2004/2/2004 5		CHRISKY				A SERVICE	S00-511-2 E 64	1550AI	16000.
4、際に遅か入った		別本では9月 医師の温度を	5116.	1. Mittender	4.	estema 6.	文地は存典させ	s asme	enscerres	0-781	mue.
t. Wemalint			folinge-lits.	1. 46~000	eners.	7×7080	HIRAL DE	era.			
			,			544.		N Miles	WARROTA.		
(SEPATOLOGIC)				A RUSSAMUS	MATA.	GESTAR	0	A RESERVE	かしている場のの	2016-13	PETER - ENTER
	61.6					F24754	~. BI	8833	均走下4。	400047	- months
R BEITHE	(4)(。 (4)(4) (6)((2) (4)	FANT. SAMETA	ε.			ens.	D	S, INSTA	いしている場のの		

≪見本≫

安全衛生

働く人の安全と健康のために、全国に 先駆けた最新の取り組みを行っています。

住友化学は、「安全をすべてに優先させる」という基本理念に基づき、当社および協力会社の従業員の安全確保に努めています。

働く人の安全を守る基本は、一人ひとりの意識と行動です。千葉工場では、技術教育を充実させ、安全管理、運転管理、設備管理など、人材育成に努めるとともに、無事故・無災害を目指して、多面的な安全活動に取り組んでいます。すなわち、危険の特定手段としては、「気がかり作業」、「ワースト作業」の洗い出し、「ヒヤリハット活動」、「各種パトロール」、また働く人の危険に対する感受性向上手段としては、「4R-KYT (4ラウンド法・危険予知訓練)」、「指差し喚呼活動」、「相互注意運動」、

「体感研修(VRを含む)」、そして技術の伝承手段としては、「ワンポイントレッスン」、「ノウハウ集」などの活動を独自に生み出し、または工夫を加えながら展開しています。 現場パトロール・指導を中心に行う「安全専任者」を配置し、現場に潜む危険要因を早期に発見し、改善につなげています。

また千葉工場は、安全衛生マネジメントシステムを、厚生労働省適格のJISHA方式から、2021年6月に、国際標準に準拠しグローバルな顧客やステークホルダーからの信頼性向上にも寄与するISO45001/JISQ45100に移行しました。

さらに労働衛生に関しては、千葉工場では、専属の産業医による生活習慣病対策の啓発や 健康診断での有所見者への個別カウンセリングなど、従業員の健康確保にも積極的に取り組 んでいます。

フルハーネフ特別教育

VR を用いた体感研修

巻き込まれ体感研修

研修センターにおけるシミュレーション教育

千葉工場では、2001年に研修センターを設置し、従業員のトータルな能力向上をめざして、教育用シミュレータや、各種の実習、体感研修(VRを含む)などを組み合わせ、理論・経験の両面から効果的な人材育成を図っています。

地域社会 との共生

地域社会の一員として、 各種活動を行っています。

※2022年現在は、新型コロナウィルスの感染拡大を踏まえ、活動は状況を見ながら一部自粛しています。

市原・袖ケ浦少年少女発明クラブ

住友化学千葉工場は、地域貢献の一環として、2002年4月、市原市、袖ケ浦市の後援のもとに、市原・袖ケ浦少年少女発明クラブを発足させました。自由な環境の中で、アイデア工作や科学実験など、創作活動の場を小中学生に提供し、創造性豊かな人間形成のお手伝いをしています。

工場見学会の開催

地域の住民の皆様や地域の小学生を対象とする工場見学 会や、説明会の場を設けて、住友化学のアクティビティに ご理解をいただくように努めています。また、「環境対話 集会」を、県・市原市・袖ケ浦市と共催しています。

地域社会との交流

千葉工場は、市原市、袖ケ浦市の行事に積極的に参加し、 地域の住民の皆様や各企業との交流を図っています。

工場周辺の清掃活動

市原市や袖ケ浦市の呼びかけに応じて、従業員がボランティアで、国道16号線周辺の清掃を行っています。

CONTENTS

> 11 水質汚濁防止 化学的酸素要求量 (COD)、浮遊物質量 (SS)、窒素、リン

12 地球温暖化防止 エネルギー原単位、CO2排出量

13 廃棄物の削減 最終埋立処分量

PRTR 法 14 PRTR対象物質の排出・移動量、PRTR対象物質の総排出量

環境会計 15 環境保全コスト、経済効果

環境負荷 16 環境パフォーマンスデータ

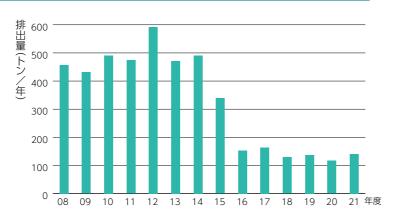
保安防災・安全衛生 17 教育・研修、防火・消火設備

18 防災訓練、労働災害発生件数の推移

19 主要資格保有者数、法令等に基く官庁立入状況

会社データ 20 会社概要

環境保全の取り組み

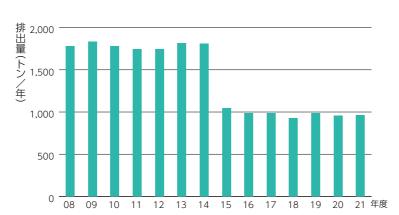

大気汚染防止

硫黄酸化物(SOx)

脱硫装置の安定稼働により硫黄酸化物の排出量の低減 を維持しています。

【硫黄酸化物とは?】

硫黄分を含む燃料を燃やした時に発生する物質で、喉や肺を刺激 し、気管支炎など人の健康への影響があります。

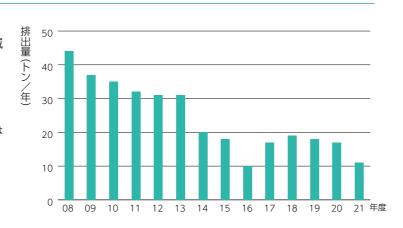


窒素酸化物(NOx)

脱硝装置の安定稼働により窒素酸化物の排出量の低減 を維持しています。

【窒素酸化物とは?】

物の燃焼にともない、燃料中の窒素化合物や、空気中の窒素が 酸化されて必然的に発生する物質で、人の呼吸器に影響を与え たり、また光化学スモッグの原因となったりします。

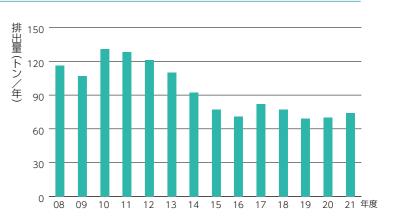


煤塵

電気集塵機等の安定稼働により煤塵の排出量の低減を維持しています。

【煤塵とは?】

油やガス燃料、その他の物の燃焼に伴い発生する、すす、または 燃えかすの固体粒子状物質のことです。

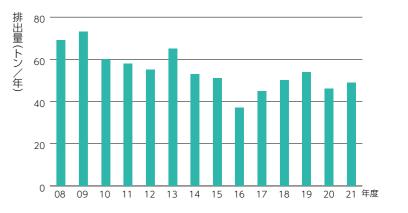

水質汚濁防止

化学的酸素要求量(COD)

東京湾の水質を改善するため、CODなどの総量規制が行われています。当工場では、高濃度のCOD排水は液中燃焼炉で焼却し、低濃度のCOD排水は活性汚泥設備で有機物を微生物により分解処理しており、1日あたりの排出量は0.2トンとなっています。

【CODとは?】

水の汚れの程度を示す指標で、汚れ(有機物)が化学的に酸化されるときに使われる酸素量を濃度で表したものです。

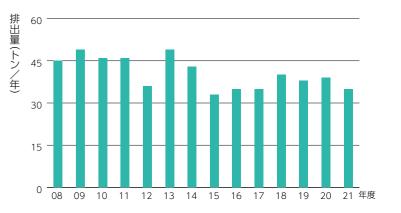


浮遊物質量(SS)

当工場では、凝集剤の使用や、沈降分離設備、加圧浮上設備、砂濾過設備の設置により浮遊物質を除去しています。

【浮遊物質とは?】

水の濁りの原因となる水中の不溶解物質の量を指します。

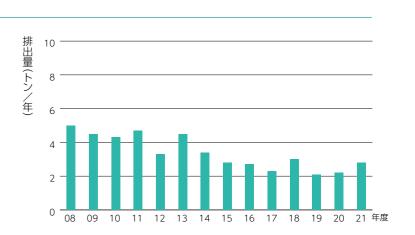


窒素

当工場では、窒素を含む副原料等の使用量を適正に管理し、排水中の窒素含有量の削減に取り組んでいます。 窒素の排出量が多い製品の生産を廃止したことにより、 排出量が減少しています。

【窒素とは?】

動植物の生育に欠かせないものですが、水域に過剰に流出した際は、富栄養化を招きプランクトンの異常増殖の要因となり、赤潮等が発生します。



リン

当工場では、リンを含む副原料等の使用量を適正に管理し、排水中のリン含有量の削減に取り組んでいます。

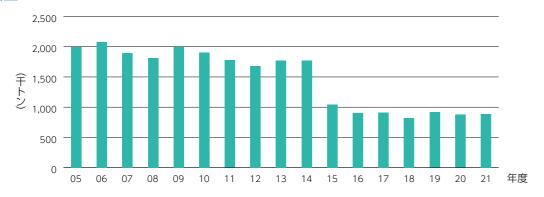
【リンとは?】

窒素と同様に動植物の生育には欠かせないものですが、水中の濃度が高くなると、水域の富栄養化を招きプランクトンの異常増殖の要因となり、赤潮等が発生します。

環境への配慮

地球温暖化防止

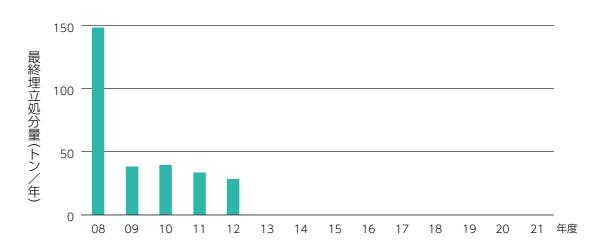
近年、二酸化炭素(CO2)による地球温暖化の進行が懸念され、CO2の排出を抑制することが求められています。当工場は CO2排出量の削減のため、排出エネルギーの回収強化、機器効率の改善、プロセスの抜本的な改善などに取り組み、エネルギーの使用効率(エネルギー原単位=(燃料+熱+電気)消費量÷生産量)を年平均1%以上改善することを目標に、一層の省エネルギーに取り組んでいます。


千葉県におけるCO2排出量は、7,552万トン(2017年度)と言われていますが、当工場の排出量はその1.2%程度となっています。

また、温室効果ガス排出削減に向けた取り組みの一環として、当工場で運転している火力発電設備の内、石油コークスを燃料とする火力発電設備を廃止し、CO2排出係数の低い液化天然ガス(LNG)を燃料とするガスタービン発電設備を新設します。本設備の完成は2023年秋を予定しています。これにより、年間24万トン以上のCO2を削減する計画です。

エネルギー原単位(2005年=指数100)

CO2排出量



当工場の自主行動計画目標: 2030 年度までに住化グループ全体の目標である GHG 排出量削減 (2020 年度比で36% 以上) に寄与するため、高効率 GTG 導入起業等を計画通り推進する。

廃棄物の削減

生産活動にともなって、汚泥、廃プラスチック、廃油、紙くずなど、さまざまな廃棄物が発生しますが、当工場は焼却炉を設置して減容化を行うとともに、焼却灰は路盤材の原料にするなどリサイクル化を推進しています。 最終埋立処分量については、2000年度比(4250トン)99%(42トン以下)以上削減を継続する目標で取り組んでいます。 2013年度~2021年度は埋立量が"0"となっています。

最終埋立処分量

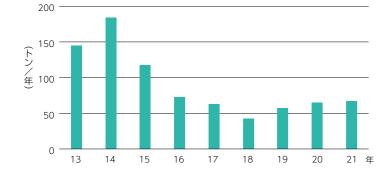
特定化学物質の管理

PRTR (Pollutant Release and Transfer Register: 環境汚染物質の環境中への排出量および事業所外への移動量 (注1)の登録)とは、有害性のおそれのあるさまざま化学物質が、どのような発生源から、どれくらい環境中へ排出されたか、あるいは廃棄物に含まれて事業所の外に運び出されたかというデータを把握・集計し、公表するしくみです。

当工場は、1994年度から(社)日本化学工業会が選定した対象物質についてPRTR調査を実施しています。

その後、2000年度に施行されたPRTR法(注2)で定められている対象物質(354物質)のうち、当工場では40物質を製造・使用していました。

2010年4月に、新PRTR法が施行され、対象物質が462物質となり、そのうち当工場では47物質を製造・使用しています。 2021年度の総排出量は66.9トン、廃棄物として外部に処理した移動量は11.2トンとなりました。


当工場は今後とも、化学物質の環境に与える影響を勘案し、削減目標を設定して一層の排出抑制に取り組んでいきます。

PRTR対象物質の排出・移動量

(トン/年)

物質名	排出量		移動量		
初貝石		大気	水質	土壌	
クメン	23.7	23.7	0.0	0.0	0.0
酢酸ビニル	22.3	22.3	0.0	0.0	0.0
nーヘキサン	6.6	6.6	0.0	0.0	0.0
トルエン	6.7	6.7	0.0	0.0	4.7
メタクリル酸メチル	0.4	0.4	0.0	0.0	0.0
メタクリル酸2,3エポキシプロピル	2.1	2.1	0.0	0.0	0.0
アクリル酸メチル	0.3	0.3	0.0	0.0	0.0
亜鉛化合物(水溶性)	0.8	0.4	0.4	0.0	0.5
メチルナフタレン	0.1	0.1	0.0	0.0	0.0
トリクロロフルオロメタン(R-11)	0.0	0.0	0.0	0.0	0.0
アクリロニトリル	0.1	0.1	0.0	0.0	0.0
モルホリン	0.1	0.0	0.1	0.0	0.0
エチルベンゼン	2.4	2.4	0.0	0.0	0.0
2.2-ジクロロー1.1.1-トリフルオロメタン(R-123)	1.2	1.2	0.0	0.0	0.0
スチレン	0.1	0.1	0.0	0.0	0.6
銅化合物	0.0	0.0	0.0	0.0	0.0
メタアミノフェノール	0.0	0.0	0.0	0.0	0.0
1, 3ブタジエン	0.0	0.0	0.0	0.0	5.4
ベンゼン	0.0	0.0	0.0	0.0	0.0
ヒドラジン	0.0	0.0	0.0	0.0	0.0
プロピレンオキサイド	0.0	0.0	0.0	0.0	0.0
アセトアルデヒド	0.0	0.0	0.0	0.0	0.0
排出量合計	66.9	66.4	0.5	0.0	11.2

PRTR対象物質の総排出量

- 注1: PRTR制度における「排出量」と「移動量」の定義
- ①排出量:第1種化学物質(PRTR対象物質)の環境 (大気・公共用水域・土壌)へ排出される量
- ②移動量:第1種化学物質(PRTR対象物質)を含む廃棄物が事業所外へ移動される量
- 注2: PRTR法:「特定化学物質の環境への排出量の把握等 及び管理の改善の促進に関する法律」

環境会計

環境保全活動の効果測定

住友化学は、環境保全にかかる費用と効果を定量的に把握し、環境投資と効果を評価するために、2000年度から「環境会計」を導入しました。

2021年度の千葉工場の環境会計は次の表のとおりで、環境保全のための設備投資額は2.66億円、環境保全活動のために使用した費用は56.3億円でした。またその効果については、リサイクル活動、省資源、省エネルギーによって、合計0.62億円となりました。

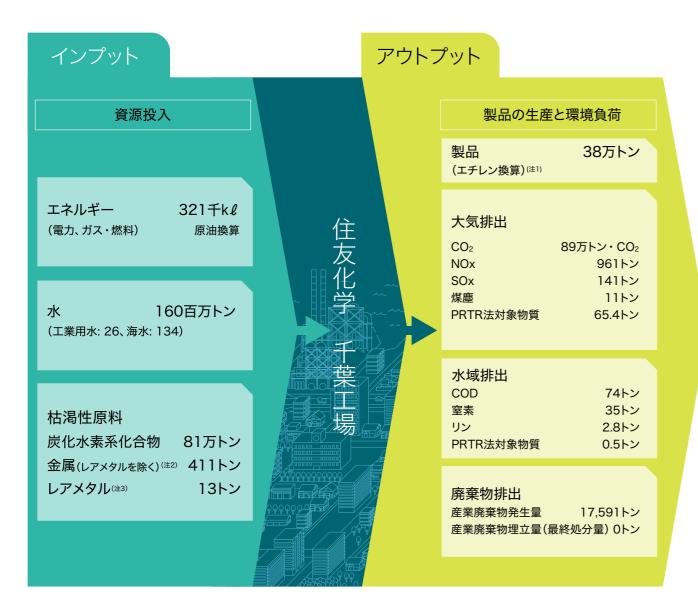
環境保全コスト

(単位:百万円)

分類	主な取り組み内容	投資額	費用
事業エリア内 環境対策コスト	大気汚染・水質汚濁防止・地盤沈下防止	111	3,931
地球環境保全コスト	温暖化防止等	0	7
資源循環コスト	省資源・省エネルギー	147	1,347
小計		258	5,285
上・下流コスト	製品、容器包装等のリサイクル等	0	0
管理活動コスト	環境マネジメントシステムの構築、運用等	0	107
研究・開発コスト	環境保全に役立つ製品等の研究開発等	0	0
社会活動コスト	緑化、景観保持の環境改善対策	8	242
環境損傷コスト	自然破壊等の修復のためのコスト等	0	0
合 計		266	5,634

経済効果

(単位:百万円)


効果の内容	効果
リサイクル活動による費用削減	0
省資源による費用削減	2
省エネルギーによる費用削減	60
	62

この環境会計の報告は、環境省が公表した「環境会計ガイドライン」を参考に作成しています。

環境負荷

生産活動と環境への影響

住友化学は、2002年度より環境パフォーマンスデータを集計しています。 2021年度の当工場の環境パフォーマンスは次のとおりとなります。

- 注1: 生産品目によっては重量ベースでの取りまとめが困難なものがあるため、一定の条件を仮定し推算しました。
- 注2: 金属(レアメタルを除く): 鉄、金、銀、銅、亜鉛、アルミニウム、鉛、白金、チタン、パラジウム、ガリウム、リチウムの12金属を集計対象としました。
- 注3: レアメタル:供給構造が極めて脆弱で国家備蓄を行っている以下の7金属を集計対象としました。 ニッケル、クロム、タングステン、コバルト、モリブデン、マンガン、バナジウム

保安防災・ 安全衛生

保安防災の取り組み

教育・研修

当工場は環境保安・安全衛生・設備管理について、法定教育を実施するだけでなく、自主的な取り組みとして、意識教育、技能教育など多方面にわたる教育を実施しています。2021年度は下表のとおり、延べ1,004人が受講しました。

分類	百日夕	実	実績		
分 類	項目名 	回数	参加者数		
環境保安	環境保安法規説明会	1	40		
	ISO14001内部監査員養成研修	2	8		
	新任副防災管理者研修	23	31		
	技術研修(RC基礎研修)	4	128		
安全衛生	新入社員安全衛生教育	3	23		
	新任監督者安全衛生教育	1	5		
	新任管理者教育	1	30		
	技術研修(安全衛生)	5	26		
	救急蘇生法訓練	0*	0		
	安全体感教育	24	63		
	交通安全体感教育	6	72		
	OSHMS教育	1	47		
	フルハーネス特別教育	32	514		
	安全管理者選任時研修	5	13		
設備管理	設備管理推進「ワンポイントレッスン」]**	4		

^{*}新型コロナウイルス感染防止のため、実施見送り。

防火・消火設備

当工場は十分な防火・消火設備を有しており、事故の防止、および万一の事故発生時の拡大の防止を図っています。

化学消防車	3台
高所放水車	1台
消火栓	724力所
泡消火栓	254力所
消火栓への給水管の総延長(工場内のみ)	35.9km
消火器	4,852台
火災報知器	675台
ガス検知器	1,967台

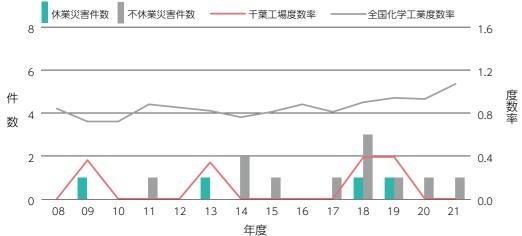
^{**}SDMのため、下期実施無し

保安防災の取り組み

防災訓練

防災訓練については、職場単位、工場全体、あるいは近隣企業や消防署と共同で行っており、2021年度は、506回実施し、 当社従業員の延べ参加人員は2,946名でした。

訓練内容	実績		
訓練内容	回数	参加者数	
工場総合防災訓練	3	419	
専任消防隊と職場消防隊との合同消防訓練	65	831	
共同防災隊の消防訓練	96	320	
専任消防隊のレベルアップ訓練	287	1,107	
職場緊急要員の消防訓練	55	269	
合計	506	2,946	


労働災害発生件数の推移

当工場は、「安全をすべてに優先させる」との基本理念に基づき、ソフト、ハード、システムの面から、無事故・無災害の達成を目指して、当社および協力会社の従業員が一丸となって取り組んでいます。

当社従業員につきましては、2017年10月30日に無災害記録1200万時間を達成し、厚生労働省労働基準局長から第3種無災害記録証を受領しています。

無災害記録証

(注)休業災害: 休業を余儀なく される災害 不休業災害: 休業災害に至らない災害

度数率:延べ労働時間100万時間 当たりの休業災害件数

(被災者数)

主要資格保有者数 (2022年8月現在)

分類	·····································	保有者数	小計
環境	公害防止管理者(大気)	93	
	公害防止管理者(水質)	141	
	公害防止管理者(騒音)	3	
	公害防止管理者(振動)	3	
	公害防止管理者(ダイオキシン類)	8	
	環境計量士	2	
	産業廃棄物処理施設技術管理者	4	
	特別管理産業廃棄物管理責任者	2	256
環境ISO	ISO14001内部監査員	92	92
エネルギー	エネルギー管理士	60	60
安全衛生	衛生管理者(衛生工学衛生管理者を含む)	48	
	ISO45001内部監査員	36	
	特定化学物質等作業主任者	410	
	有機溶剤作業主任者	557	
	毒劇物取扱責任者	5	
	作業環境測定士	1	
	ボイラー技師(特級、1級、2級)	359	1,416
消防	危険物取扱者(甲種、乙種、丙種)	2,255	
	消防設備士	69	
	防火管理者(甲種、乙種)	6	2,330
高圧ガス	高圧ガス製造保安責任者(甲種、乙種、丙種)	828	
	冷凍保安責任者(1種、2種、3種)	92	920
その他	放射線取扱主任者	13	
	電気主任技術者(1種、2種、3種)	22	
	電気工事施工管理技師(1級)	1	
	保全技能士	133	
	一般計量士	6	
	情報処理技術者	9	184
総合計			5,258

法令等に基づく官庁立入状況

千葉工場では、環境保全や保安防災に関する各種法令に基づく規制基準や、千葉県、市原市、袖ケ浦市と締結している 公害防止協定に定めた協定値の遵守状況を確認のため、県、市など所管官庁による立入検査(調査)を受けています。

		立ち入り回数(2021年度)	主な行政、所管官庁
Ŧ	環境保全関係	13	千葉県、市原市、袖ケ浦市など
1	保安防災関係	6	千葉県、市原市、袖ケ浦市、国土交通省など

会社データ

〒299-0195 千葉県市原市姉崎海岸5番地1 Phone: 0436-61-1313

Fax: 0436-61-2229

●エッセンシャルケミカルズ研究所(千葉)

〒299-0295 千葉県袖ケ浦市北袖2番地1

Phone: 0436-61-5340 Fax: 0436-61-5344

●工業化技術研究所(千葉)

〒299-0295 千葉県袖ケ浦市北袖2番地1

Phone: 0436-61-5245 Fax: 0436-61-5267

●先端材料開発研究所(千葉)

〒299-0295 千葉県袖ケ浦市北袖2番地1

Phone: 0436-61-5309 Fax: 0436-61-5469

●エネルギー・機能材料研究所(千葉)

〒299-0295 千葉県袖ケ浦市北袖2番地1

Phone: 0436-61-5273 Fax: 0436-61-5299

●従業員(2022年10月1日現在) 1,155名 (うち研究所286名)

●面積

2.169±m²

姉崎地区.. 439千m² 袖ケ浦第1地区... 658千m² 袖ケ浦第II地区1,072千m²

●生産設備能力 (合弁会社を含む)

設備名	生産能力(千トン/年)
低密度ポリエチレン	315
ポリプロピレン	330
エチレン・プロピレンニ	1 ム 40
エチレン・酢ビエマルシ	ブョン 35
SBR ラテックス	30
ノルマルヘキサン	10
プロピレンオキサイド	200
イソブテン、1- ブテン	87
アセトアルデヒド	69
レゾルシン	20

●本社(東京):

〒103-6020 東京都中央区日本橋2丁目 7番1号 東京日本橋タワー(総合受付: 7階)

Phone: 03-5201-0200 Fax: 03-5201-0430 インターネットホームページ:

https://www.sumitomo-chem.co.jp/

■本社(大阪):

〒541-8550 大阪府大阪市中央区北浜

4丁目5番33号住友ビル Phone: 06-6220-3211

Fax: 06-6220-3345

●愛媛工場

主要製品:硫酸、硝酸、アニリン、アクリ ロニトリル、カプロラクタム、苛性ソーダ、メ タクリル樹脂、アルミナ、高純度アルミナ、 電子工業用高純度薬品、スーパーエンジ ニアリングプラスチックス、農薬、医・農薬 中間体、メチオニン

●大江工場

主要製品:光学機能性フィルム、リチウム

愛媛工場、大江工場、生産安全基盤センター、工業化技術研究所(愛媛)、 エッセンシャルケミカルズ研究所 (愛媛)、エネルギー・機能材料研究所 (愛媛、大江)、

●大阪工場

分子添加剤

●大分工場

岡山プラント

岐阜プラント

●三沢工場

その他有機工業薬品

主要製品:フォトレジスト、農薬、染料、高

主要製品:農薬、家庭用・防疫用殺虫剤、

高分子添加剤、レゾルシン、医薬中間体

主要製品: 医薬原体、医薬中間体、

主要製品:医薬原体、医薬中間体

主要製品:家庭用殺虫剤原体、農薬原体

千葉工場・研究所関連の主な海外展開

●シンガポール

ポリエチレン、ポリプロピレン、 S-SBR、MTBE、1-ブテン

●サウジアラビア

ポリエチレン、ポリプロピレン、 プロピレンオキサイド、 エチレン・プロピレンゴム、

MTBE、高分子複合材料

●韓国

情報電子化学品研究所(大江)

MTBE,

半導体用高純度薬品 ●中国

高分子複合材料

●アメリカ 高分子複合材料

●タイ

高分子複合材料

●イギリス

高分子複合材料

●フランス 高分子複合材料

●インド

高分子複合材料

京葉臨海鉄道貨物線 **JERA** 姉崎火力発電所 日本板硝子 国道 16号線 姉崎地区 JFE溶接鋼管 内房線 袖ケ浦第1地区 五井 丸善石油化学 京葉エチレン 三共化学 姉ヶ崎 出光興産 市原市 住友化学姉崎地区 住友化学袖ケ浦第I地区 袖ケ浦市 住友化学袖ケ浦第川地区 長浦 富士石油 住化分析センター 北袖インターチェンジ 日本メジフィジックス 袖ケ浦 **ADEKA** 袖ケ浦第Ⅱ地区 広栄化学 住化カラー エア・ウォーター・ハイドロ 16号線